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Abstract—This paper presents a trend analysis of the COVID-
19 pandemics in Mexico. The studies were run in a subnational
basis because they are more useful that way, providing im-
portant information about the pandemic to local authorities.
Unlike classic approaches in the literature, the trend analysis
presented here is not based on the variations in the number
of infections along time, but rather on the predicted value of
the final number of infections, which is updated every day
employing new data. Results for four states and four cities,
selected among the most populated in Mexico, are presented.
The model was able to suitably fit the local data for the selected
regions under evaluation. Moreover, the trend analysis enabled
one to assess the accuracy of the forecasts.

Index Terms—epidemiology, mathematical model, trend anal-
ysis, COVID-19, SARS-CoV-2

I. INTRODUCTION

The SARS-CoV-2 (Severe Acute Respiratory Syndrome
Coronavirus 2) is the new coronavirus that causes the
COVID-19 infection. Primarily understood as a lung-tropic
virus that infects the respiratory tract, more research on its
physiopathology has shown that the COVID-19 infection
presents itself as a general inflammatory disease in humans,
since its receptor ACE2 is present in the cells membrane
of many different human tissues, such as the gastrointestinal
epithelial cells [1], platelets and endothelial cells [2], neurons
[3], among others. For this reason, COVID-19 symptoms
are not only respiratory, but can include diarrhea, nausea,
neurological complications and atherothrombosis [1]–[3].

Since the first outbreak in Wuhan, China, in December
2019, studies have shown that the most effective measures to
prevent the COVID-19 infection are social distancing, using
hand sanitizers and wearing personal protective equipment
(PPE), such as masks [4]. It is also known that media trust
and social norms have a major influence over the adoption
of safety behaviors by the population [5].

Mathematical modeling in epidemics is a reasonable ap-
proach when studying the disease’s dynamics because it can
provide accurate information about new cases, new deaths

and serve as a tool for authorities to predict the epidemic
curve [6]. Models can include data and many different
compartments to better estimate the population’s parameters
and predict the evolution of the epidemic [6]–[8].

Mexico is one of the most affected countries by COVID-
19 since it has the third-largest death toll in the world
until now. Mexico has the third-largest population in the
American continent and faces socioeconomic disparities that
influence the impacts of the pandemic [9]. Studies show that
cases from the first wave in early 2020 were imported in
February and in a few weeks’ time community transmission
was also reported, with new cases and deaths concentrated
in Mexico City [10]. The relaxation of the safety measures
after the first wave led to a greater second wave of cases that
were no longer concentrated in the country’s capital [11].
Mathematical modeling of the pandemic in Mexico can help
the country’s health authorities to overcome its difficulties as
regards testing and predicting new cases and deaths.

In this paper, the final number of deaths is forecast based
on local data for selected Mexican states and cities and trend
analysis is applied to evaluate the accuracy of the fitted
model. For the selected localities, the model has been able to
represent suitably the data and the trend analysis provided an
adequate figure of merit to assess the validity of the forecast
and to support the local authorities in their decision-making
process.

II. THE PROPOSED APPROACH

This paper describes the cumulative number of infections
C(t) using Richards growth model, which is characterized
as [12], [13]:
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where t is the time, A is the number of infected people at
the end of the epidemic (final number of infections), (δν)−1

is the intrinsic growth rate, ν is a parameter associated to
the asymmetry between the acceleration and deceleration
phases of the pandemic, and tp is the turning point between
these two phases. The parameters A, tp, ν, δ are strictly
positive constant real numbers. C and A represent numbers
of infected people, t, tp and δ are measured in days, and ν
is an dimensionless value.

It should be noted that the cumulative number of infections
is not a real value, but rather an integer one, and therefore
should be represented by a discrete function. Similarly,
although the time values are continuous, they are reported
as discrete values, for the data update occurs once a day.
However, as is costumary in epidemiological models, this
discrete behavior is approximated here by a continuous
function, without loss of representativity.

The model described by eqs. (1)-(2) has an analytical
solution, given by [12]–[14]:
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An advantage of this closed form is that it simplifies
theoretical and numerical analyses [12], for it does not
require the solution of a differential equation.

By differentiating C(t) in (3) with respect to t, one finds
[14]:
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The expression presented in (3) is an asymmetrical sig-
moid, containing one acceleration and one deceleration
phase. Therefore, it is adequate to describe one epidemio-
logical wave.

When multiple epidemiological waves occur in the same
region during the same disease outbreak, it is convenient to
describe the accumulated number of infections as a sum of
sigmoids [14]. In this case, the set of parameters A, tp, ν, δ
is generalized to Aj , tp,j , νj , δj , where j is an integer value
varying from 1 to the number Ns of sigmoids adopted to
describe the disease behavior. The total number of infected
people is then given by:

A =

Ns∑
j=1

Aj (5)

The number of sigmoids Ns is estimated by analyzing the
filtered second derivative of the observed data. A transition
from a deceleration to an acceleration phase indicates the
onset of a new epidemiological wave. The procedure is
described in detail in our previous paper [14].

The estimation of the parameters Aj , tp,j , νj , δj is per-
formed by using a standard numerical optimization technique
to solve a constrained optimization problem, aiming to mini-
mize the quadratic residue between the observed data and the

model output C(t). To that end, the well-known Sequential
Quadratic Programming algorithm [15] is adopted here. It
is worth remarking that the parameters Aj , tp,j , νj , δj are
estimated once again once more data is available. Thus, at
each iteration they are constant, but their estimated values
vary with time.

Let Â(t) represent the estimation of the value of A
performed with all available data until a given date t. It
is important to point out that, in a model representing the
outbreak of a disease in a given locality, the value of A is
actually a constant value. The term that is a function of time
is the estimation of such value. This estimation may vary
according to unpredicted changes in the disease dynamics.

An analysis of the trend of Â(t) along time provides an
important information for health authorities. If this value is
approximately constant for a long period, one may assume
that the disease is under control and converging to a final
value. On the other hand, if an increasing trend is observed,
then further actions to contain the disease would be advised.

The calculation of Â(t) requires repeating the model cal-
ibration for every day between specified starting and ending
dates. That means that the determination of the value of Â(t)
in an interval range ta ≤ t ≤ tb requires an estimation of the
model parameters at each time instant t = ta, ta + 1, ..., tb
with all available data until that specific date. This procedure
may be very expensive computationally. That is the reason
why we have chosen a model with a closed form, expressed
in eq. (3). The use of a model that does not require solving
a differential equation allows for a computationally efficient
implementation.

III. RESULTS AND DISCUSSION

To perform this study, data describing the daily infections
of the COVID-19 pandemic in Mexico until March 17th 2021
were downloaded from an official website of the Mexican
government [16]. Then, four states and four cities were
chosen randomly along the most populated ones.

Figure 1 presents the results of this study for the Mexican
states of Distrito Federal, Guanajuato, Jalisco, and Veracruz.
Each row in the figure corresponds to one of these states,
which were sorted in alphabetical order. Three graphs are
presented for each state: (a) the cumulative number of infec-
tions C(t), comparing the observed data and the model output
described in eq. (3); in the bottom right of each graph, the
value of the root mean-squared error (RMSE) is presented;
(b) the daily number of infections dC(t)/dt, comparing the
raw observed data, the observed data filtered through a 7-day
moving average filter, and the model output, as in eq. (4); and
(c), the predicted final number of cases Â(t).

Similar results are presented in Fig. 2 for the Mexican
cities of Juarez, Leon, Puebla, and Tijuana.

From the results, it is clear that the technique is able
to find a very good fit for the curve of the accumulated
cases. In fact, the root mean-squared error RMSE value
found in each case is very small, when compared to the
number of cases. On the other hand, the data containing
the daily number of infections presents a behavior similar
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Fig. 1. Results for the Mexican states of Distrito Federal, Guanajuato, Jalisco and Veracruz.

to a signal corrupted by high sensor noise, probably due to a
non-uniform delay between the infection occurrence and its
notification to health agencies. Despite this fact, the model
can accurately approximate the general trend of the daily
cases. This type of noisy behavior cannot be observed in
the accumulated cases data because of its integrative nature,
that balances out the fluctuations and gives it a robustness
against noise. It should also be noted the similarity between
the model output and the filtered daily data.

It can be seen that every state and city had two epidemio-
logical waves and that the second wave had noticeable peaks
at approximately the same period of time (Jan-Feb/2021).
The only exception is Juarez, which had a pronounced peak
around Nov/2020. The model output describing the daily
infections shows that, in most cases, the second wave started
around Oct/Nov 2020 and had more infections than the first
wave. Only at the state of Veracruz the second wave did not
surpass the number of cases of the first one. It is also evident
that the model can successfully represent this multiple-wave
behavior.

The graph with the predicted final number of cases ex-
presses valuable information about the trend of the pandemic
across the year in Mexico. It can be seen that, in the second
semester of 2020, the graph is nearly constant for most of
the states and cities. This behavior reveals a stabilization on
the number of expected infections in those regions at that
time, since the whole country was recovering from the peak
in the middle of the year. Around December, however, this
prediction rises suddenly, indicating the possible arrival of a
second wave there. The later results confirmed the occurrence

of such second wave.
In the beginning of the second wave, the value of the

predicted number of cases suffers a very large increase, but
then decreases to a smaller value, in which the prediction
has remained for the last four weeks of the analysis. Such
value, however, is still significantly higher than the predic-
tions performed in the second semester of 2020, which was
expected, because the number of infected people is expected
to be higher if there are two epidemiological waves instead of
only one. Furthermore, the initially very large increase in the
prediction during the onset of the second wave, followed by
a later stabilization, indicates that the analysis is sensitive to
the amount of data available and that it is capable to perform
a better forecast when there is significant new data describing
the new wave. On the other hand, the quality of the forecast
may be inferred by analyzing its variations along time, as a
forecast is intrinsically more reliable if it remains constant for
several weeks. Such regular behavior, almost constant, also
indicates that the epidemic is under control. This is the main
conclusion that can be drawn from the analysis concerning
the data of the more recent four weeks.

IV. CONCLUSIONS

This paper employed a classic epidemiological model to
represent the dynamics of the COVID-19 in Mexican states
and cities. A trend analysis approach was employed allowing
to assess if the pandemic is already stabilized or requires a
more strong action from the local governments. A model with
a closed-form solution was adopted, in order to allow for a
more computationally efficient implementation.

1822



Fig. 2. Results for the Mexican cities of Juarez, Leon, Puebla and Tijuana.

The technique provides more useful information when
applied for a city, instead of a state, because it allows the
municipal authorities to take action according to the local
behavior of the disease.

Future works could run the trend analysis with different
model structures and extend it to other regions in the world.
Furthermore, the same approach could be adopted to analyze
the trend of other diseases.
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