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Abstract — Molecular imaging has long been recognized as an 

important tool for diagnosis, characterization, and monitoring 

of treatment responses of brain tumors. Magnetic resonance 

spectroscopic imaging (MRSI) is a label-free molecular imaging 

technique capable of mapping metabolite distributions non-

invasively. Several metabolites detectable by MRSI, including 

Choline, Lactate and N-Acetyl Aspartate, have been proved 

useful biomarkers for brain tumor characterization. However, 

clinical application of MRSI has been limited by poor resolution, 

small spatial coverage, low signal-to-noise ratio and long scan 

time. This work presents a novel MRSI method for fast, high-

resolution metabolic imaging of brain tumor. This method 

synergistically integrates fast acquisition sequence, sparse 

sampling, subspace modeling and machine learning to enable 3D 

mapping of brain metabolites with a spatial resolution of 

2.0×3.0×3.0 mm3 in a 7-minute scan. Experimental results 

obtained from patients with diagnosed brain tumor showed 

great promise for capturing small-size tumors and revealing 

intra-tumor metabolic heterogeneities.  

Clinical Relevance — This paper presents a novel technique 

for label-free molecular imaging of brain tumor. With further 

development, this technology may enable many potential clinical 

applications, from tumor detection, characterization, to 

assessment of treatment efficacy.   

 

I. INTRODUCTION 

Noninvasive molecular imaging of brain tumor has been a 
dream of imaging scientists and clinicians [1]–[3]. Knowledge 
of tissue metabolism is essential for diagnosis, treatment 
planning and therapeutic assessment of brain tumor [2]–[7]. 
Magnetic resonance imaging (MRI) techniques have been 
widely used in clinical practice to provide structural 
information, which is sensitive to neoplastic diseases but not 
specific for the definition of the borders of tumoral 
involvement. There are several important clinical questions 
that cannot be elucidated by structural imaging alone but 
potentially with the help of metabolic imaging, including: 
differentiating tumors with other focal lesions, differentiating 
tumors of different grades and mutant phenotypes, evaluating 
metabolic heterogeneities of tumor, delineating tumor 
boundaries, and monitoring responses to treatment [7], [8]. 

Molecular imaging techniques like positron emission 
tomography (PET) have been used for imaging brain tumor 
metabolism although their clinical use has been limited by the  
accessibility to specific radioactive tracers [9], [10]. Magnetic 
resonance spectroscopic imaging (MRSI) is a label-free 
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molecular imaging technique that has long shown great 
promise in capturing metabolic abnormality in brain tumors 
[2], [7]. Numerous studies in the past several decades have 
shown the clinical values of brain metabolites including N-
Acetyl Aspartate (NAA), Choline (Cho), Creatine (Cr) and 
Lactate (Lac) as biomarkers for differentiation between high-
grade and low-grade tumors, and between neoplastic and non-
neoplastic lesions. Spectra of brain tumors typically show 
decreased NAA (related to neuron loss) and increased Cho 
(associated with tumor cell proliferation) compared to normal 
brain tissue. [2]–[7].  

However, due to the low concentration of brain metabolites 
(<1,000th of water) and the requirement of large number of 
measured data samples, conventional MRSI techniques take 
long scan time (~20 minutes) and are limited to single voxel 
measurements or single slice imaging with low-resolution (~1 
cm3) [2], [7]. The limited spatial coverage and low resolution 
of conventional MRSI techniques make it difficult to capture 
whole-brain metabolic changes and metabolic alterations of 
small tumors, which have been a major obstacle for 
widespread clinical use. To overcome these difficulties, 
dedicated efforts have been made in the past decades to 
improve the imaging capability of MRSI, including special 
excitation pulses [11], [12], fast sampling trajectories [13]–
[15] and advanced processing methods [16]–[18]. However, 
MRSI has yet been widely accepted as a routine clinical tool 
due to inadequate spatial resolution and imaging speed. 

In this paper, we present a novel MRSI method for fast, 
high-resolution mapping of brain tumor metabolism. This 
method utilizes the subspace imaging framework in SPICE 
(Spectroscopic Imaging by exploiting spatiospectral 
CorrElation) [19]–[27] to synergistically integrate fast 
scanning, sparse sampling, subspace modeling and machine 
learning strategies. The proposed method has enabled 
volumetric mapping of brain metabolites with a spatial 
resolution of 2.0×3.0×3.0 mm3 in a 7-minute scan. 
Experimental results demonstrated an impressive imaging 
capability to map the metabolic heterogeneities of tumor and 
delineate small-size tumors.  

The rest of the paper is organized as follows: Section II 
describes the method in detail including data acquisition and 
image reconstruction, Section III shows representative in vivo 
results obtained from tumor patients, and Section IV concludes 
the paper.   
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II. PROPOSED METHOD 

The proposed method includes a special data acquisition 
scheme for fast imaging and a novel model-based method for 
image reconstruction. For fast high-resolution data acquisition, 
a special sequence was developed to achieve rapid scanning 
and sparse sampling of (k, t)-space; for image reconstruction, 
a union-of-subspaces model and subspace learning strategies 
were developed for effective nuisance signal removal and 
high-quality reconstruction from highly-undersampled, noise-
corrupted (k, t)-space data.  

A. Data acquisition  

The proposed pulse sequence is illustrated in Fig. 1. To 
enable rapid scanning, the proposed pulse sequence used a 
short TR of 160 ms which is about a factor of 10 shorter than 
the TR used in traditional MRSI methods. This short TR was 
achieved by employing FID (free induction decay)-based 
acquisition with ultrashort TE (instead of spin echo-based 
acquisition with long TE) and eliminating the traditional 
lengthy pulses for water and lipid suppression. The removal of 
water suppression pulses also enabled simultaneous collection 
of unsuppressed water signals, which were utilized for 
correcting system imperfections (e.g., field inhomogeneity and 
field drift). To achieve high-resolution MRSI, rapid EPSI 
(echo planar spectroscopic imaging) trajectories with a large 
echo-space (1.76 ms) were used to obtain a resolution of 2 mm 
in the readout direction. As shown in Fig. 1(B), the EPSI 
trajectories enabled large coverage of k-space at the expense 
of reducing spectral encodings, which was handled by our 
processing method. Moreover, to increase the resolution in the 
phase encoding directions within a short scan time, the (k, t)-
space was sparsely sampled with variable density (shown in 
Fig. 1(C)). More specifically, central k-space region was fully 
sampled for metabolic imaging while peripheral (k, t)-space 
was sparsely sampled by a factor of 36 below the Nyquist 
sampling density using CAIPIRINHA (controlled aliasing in 
parallel imaging results in higher acceleration) trajectories so 
as to achieve high resolution for the water signals [25]. 
Combining these unique features, the proposed pulse sequence 
was able to acquire 3D metabolite signals at 2.0×3.0×3.0 mm3 
resolution and water signals at 2.0×1.0×1.0 mm3 resolution in 
a 7-minute scan.  

B. Image reconstruction 

With our data acquisition scheme, spectroscopic signals 
from different molecules (i.e., water, lipids, and metabolites) 
were simultaneously acquired in sparse measurements. The 
key processing issue lies in the separation and reconstruction 
of the spatiospectral functions from different molecules. We 
successfully solved this problem using a union-of-subspaces 
model-based method [25]. In our model, the spatiospectral 
function of each molecule (𝜌𝑛(𝑥, 𝑡)) was assumed residing in 
a very low-dimensional subspace, and the overall signal 
(𝜌(𝑥, 𝑡)) in the union of these subspaces:  

  

where 𝑣𝑛,𝑙(𝑡) denotes the temporal basis function for the 𝑛th 

molecule (including water and lipids) and 𝑢𝑛,𝑙(𝑥)  the 

corresponding spatial coefficients. In practice, the model order 
𝐿𝑛  is much lower than the number of encodings, thus this 
subspace model significantly reduces the degrees-of-freedom 

[19]. This union-of-subspaces model not only facilitates 
reconstruction from sparse data and separation between 
different molecules, but also enables effective incorporation of 
spectral and spatial priors [22], [25].  

 In this work, the temporal basis functions of different 
molecules were pre-determined through subspace learning 
strategies, which provided very strong spectral priors [26]. 
More specifically, the subspaces of water and lipid signals 
(which have adequate SNR) were estimated from a set of high-
resolution non-water-suppressed MRSI training data; the 
subspaces of low-concentration molecules were estimated 
from a set of high-SNR, relatively low-resolution water-
suppressed MRSI training data. To capture the spectral 
distributions of molecules in both healthy and tumoral tissues, 
the training data were acquired from both healthy subjects and 
patients with diagnosed brain tumors.  

 With the learned signal subspaces capturing distinct spectral 
characteristics of different molecules, their spatiospectral 
functions can be separated and reconstructed effectively. 
Considering the significant concentration differences between 
nuisance and metabolite signals, we used a two-step strategy 
to reconstruct water/lipid and metabolite signals separately. 
We first solved the following optimization problem to 
reconstruct the water and lipid signals from the sparse data:  

  



where 𝑑𝑐 is the vector form of the measured data from 𝑐th coil, 
𝑉𝑤, 𝑉𝑓 are the matrix representations of the basis functions of 

water and lipid, respectively and 𝑈𝑤, 𝑈𝑓 are the corresponding 

spatial coefficients. 𝑀𝑤 , 𝑀𝑓 are the spatial supports of brain 

tissue and subcutaneous lipids. Ω , ℱ , 𝑆𝑐 , 𝐵 , and 𝐷  are the 
operators representing k-space sampling, Fourier transform, 
sensitivity encoding, field inhomogeneity, and edge-preserved 
total variation, respectively. The regularization parameters 𝜆𝑤 
and 𝜆𝑓 were chosen based on the discrepancy principle. Once 

𝑈̂𝑤  and 𝑈̂𝑓  determined, the spatiospectral functions of water 

and lipid can be synthesized as 𝜌𝑤 = 𝑈̂𝑤𝑉𝑤  and 𝜌𝑓 = 𝑈̂𝑓𝑉𝑓 . 

Water and lipid signals were then removed from the measured 
central k-space, resulting in the noisy measurements of low 
concentration molecules. We solved the following 
optimization problem to reconstruct the spatiospectral function 
of these molecules using the learned subspaces:  

 
Figure 1.  The proposed data acquisition scheme. (A) Pulse sequence 

diagram: no water/lipid suppression pulses were applied; FID signals 
were acquired in EPSI trajectories with ultra-short TE (1.6 ms) and 

short TR (160 ms); blip phase gradients were used to extend k-space 

coverage. (B) (kx, t)-space EPSI trajectories with large echospace (1.76 
ms) to achieve high resolution in the readout direction. (C) (kz, t)-space 

CAIPIRINHA trajectories for sparse sampling (acceleration factor: 36) 

to achieve high-resolution in the phase encoding directions, with 

central k-space being fully sampled for metabolite signals. 

3050



  

  

where 𝑑𝑟 is the vector form of the water/lipid removed (k, t)-
space data after field correction and coil combination, 𝑉𝑚  
represent the pre-learned basis functions of the 𝑚th molecule 
and 𝑈𝑚  are the corresponding spatial coefficients to be 
determined. The second term of the cost function were spatial 
constraints imposed to further improve the SNR. The 
spatiospectral functions of different molecules can be 
generated as 𝜌𝑚 = 𝑈𝑚𝑉𝑚 . Finally, the concentrations of 
different molecules can be estimated from the spatiospectral 
functions via spectral quantification [23].  

C. In vivo experiment  

All scans were performed on a 3T Skyra MR scanner 
(Siemens Healthineers, Erlangen, Germany) approved by the 
Institutional Review Board of Shanghai Fifth People’s 
Hospital, China. Sixteen patients with diagnosed brain tumor 
were recruited (9 females, 7 males). Written informed consents 
were obtained from all participants. The imaging protocols 
include contrast enhanced MRPAGE (1.0×1.0×1.0 mm3), T2 
weighted FLAIR (0.5×0.5×2.0 mm3), and 1H-MRSI using 
SPICE (2.0×3.0×3.0 mm3 for metabolite signals and 
2.0×1.0×1.0 mm3 for water signals, FOV= 240×240×72 mm3, 
TR = 160 ms, TE = 1.6 ms, 7 minutes). The same SPICE 
sequence was used to acquire high-resolution training data for 
the water and lipid signals. A semi-LASER CSI sequence 
(10×10×10 mm3, FOV = 240×240 mm2, TR = 1200 ms, TE = 
40 ms) was used to acquire training data for metabolite signals.   

III. RESULTS 

Fig. 2 shows a representative set of high-resolution MRSI 
results (2.0×3.0×3.0 mm3) obtained from a patient, comparing 
with the low-resolution counterpart with a practically used 
resolution (12×12×12 mm3). The small tumor as indicated by 
the blue arrow in the anatomical image can be clearly observed 
on the high-resolution Cho map but is not differentiable from 
surrounding tissues in the low-resolution map. The spatially 
localized spectra also showed reduced NAA and elevated Cho 
in the tumor compared with the normal tissues, which is 
consistent with previous studies [2], [7]. In the low-resolution 
data, due to the significant partial volume effects, the spectral 
features were not as distinguishable from the normal issues as 
in the high-resolution MRSI data.   

High-grade brain tumors like glioblastomas usually come 
with strong intra-tumoral heterogeneities; different regions 
such as edema, enhancing ring and necrotic core have different 
pathological conditions thus different metabolic fingerprints. 
As depicted in Fig. 3, four representative localized spectra 
from enhancing ring, surrounding edema, necrotic core and 
normal tissue showed distinct metabolic features. Edema, 
enhancing ring and edema all showed reduction of NAA due 
to the loss of neurons; enhancing ring where has the highest 
possibility of proliferation showed the highest Cho while 
necrotic cores showed reduction of all the metabolites. These 
metabolic heterogeneities can be clearly observed spatially on 
the metabolite maps in high-resolution.  

Comparison of MRSI results obtained from low-grade 
tumor (WHO grade I) and high-grade tumor (WHO grade IV) 
was displayed in Fig. 4. From the representative Cho/NAA 
ratio maps, we can see the Cho/NAA ratios in the tumor 

lesions were higher than the normal tissues, and the ratios in 
high-grade tumor were higher than the low-grade tumor, 
which is consistent with previous studies [3], [7]. Analyzing 
the Cho/NAA values between two groups quantitatively (three 
patients in each group, all voxels in the tumor and contralateral 
normal tissues were counted), we can see the significant 
differences of Cho/NAA values between high-grade tumor and 
low-grade tumor (P<0.0001) and between tumor and normal 
tissues (P<0.0001).  

Our proposed imaging method was also applied to 
monitoring the longitudinal metabolic changes after treatment 
on a tumor (metastasis from lung cancer) patient. Three scans 
were performed on the patient in 2 weeks, 3 months, and 6 
months after the gamma knife therapy, respectively. The 
Cho/NAA maps and quantitative values in the lesion area were 

 
Figure 3.  Representative MRSI results obtained from a patient with 

high-grade glioma. Localized spectra from the normal tissue, edema, 

enhancing ring, and necrosis core showed distinct spectral features. 
The high-resolution metabolite maps clearly showed the spatial intra-

tumoral heterogeneity.  

 
Figure 2.  A representative set of MRSI results obtained from a brain 

tumor patient. (A) High-resolution metabolite maps using the proposed 

method (2.0×3.0×3.0 mm3). (B) Low-resolution metabolite maps with 
a practically used resolution (12×12×12 mm3). (C) Spectra from 

normal tissue (black dot) and tumor (red dot), respectively, which were 

obtained by the proposed high-resolution MRSI method. (D) Spectra 
from the same points as in (C) but obtained by the traditional low-

resolution MRSI method.   
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shown in Fig. 5. We can clearly see the reduction of Cho/NAA 
along the time, which is related to the regional remission and 
reduction of tumor volume (can be observed on the anatomical 
images). These longitudinal positive responses to the treatment 
were well-captured by the metabolic changes detected using 
the presented method.  

These preliminary clinical results with a small cohort of 
patients demonstrated the feasibility and potential of our 
proposed method in capturing small brain tumors, imaging 
tumor heterogeneities, tumor characterization and monitoring 
treatment responses. This work could lay a foundation for 
further metabolic studies on brain tumors, providing more 
clinical insights.  

IV. CONCLUSION 

A new technique for high-resolution label-free molecular 
imaging has been developed for tumor imaging using MR 
spectroscopic signals. The technique enables 3D mapping of 
brain tumor metabolites at a nominal spatial resolution of 
2.0×3.0×3.0 mm3 in a 7-minute scan. This new imaging 
capability has produced encouraging experimental results 
capturing metabolic alterations in small-size tumors and 
revealing tumor heterogeneities, which are clinically useful for 
tumor grading and monitoring treatment effects.   
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Figure 4. (A) Representative Cho/NAA maps from a high-grade tumor 

(WHO IV) and a low-grade tumor (WHO I). (B) Quantitative 
Cho/NAA values in the high-grade tumor (from 3 patients), low-grade 

tumor (from 3 patients), and corresponding contralateral normal 

tissues. The central red mark is the median, the edges of the box are the 

25th and 75th percentiles.  

 
Figure 5.  Longitudinal metabolic changes of a tumor patient in 2 

weeks, 3 months, and 6 months after the gamma knife therapy. The 
recoveries of NAA and Cho along time have been observed from both 

spatial maps and quantitative values of Cho/NAA in the tumor regions.   
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