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Abstract— Canonical correlation analysis (CCA) is one of the
most used algorithms in the steady-state visual evoked poten-
tials (SSVEP)-based brain-computer interface (BCI) systems
due to its simplicity, efficiency, and robustness. Researchers
have proposed modifications to CCA to improve its speed, allow-
ing high-speed spelling and thus a more natural communication.
In this work, we combine two approaches, the filter-bank (FB)
approach to extract more information from the harmonics,
and a range of different supervised methods which optimize
the reference signals to improve the SSVEP detection. The
proposed models are tested on the publicly available benchmark
dataset for SSVEP-based BCIs and the results show improved
performance compared to the state-of-the-art methods and,
in particular, the proposed FBMwayCCA approach achieves
the best results with an information transfer rate (ITR) of
134.8±8.4 bits/minute. This study indeed suggests the feasibility
of combining the fundamental and harmonic SSVEP compo-
nents with supervised methods in target identification to develop
high-speed BCI spellers.

I. INTRODUCTION

Brain-computer interface (BCI) systems provide an alter-
native non-muscular communication method by translating
brain electrical activities into specific control commands.
BCI technologies can be exploited in a wide range of
applications [1], [2] among which the BCI-spellers stand
out as speech impairment has a critical impact on the
quality of life of disabled individuals [3]. Typically, BCI
systems rely on the electroencephalogram (EEG) signals
features to work. There are three major paradigms in BCI-
spellers, namely P300-event-related potential, steady-state
visual evoked potentials (SSVEP) and motor imagery (MI)
[4]. Of these, the SSVEP-based BCI spellers have attracted
much attention due to their high signal-to-noise ratio (SNR)
and high communication rate. SSVEP are characterized as
voltage oscillations in the visual cortex whose frequency is
matching the frequency (and its harmonics) of an external
visual stimulus flickering at a specific frequency [5].

Traditionally, the Power Spectral Density Analysis
(PSDA) methods are used to identify the flickering stimuli
[6]. However, PSDA is sensitive to noise when the signal
to be analyzed comes from a single channel. Since then,
different multichannel-based methods have been proposed,
such as the maximum contrast combination (MCC) [7], the
multivariate synchronization index (MSI) [8] or the canonical
correlation analysis (CCA), among others. In recent years,
deep learning approaches have also been studied [9], [10].
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CCA is initially proposed by Lin et al. [11] and became
the standard paradigm since its introduction. The CCA-
based methods calculate the correlation coefficients between
an SSVEP response and reference signals at each stimu-
lus frequency. Many of the improvements of the standard
CCA method aim to develop optimal or individual reference
signals instead of using artificial sinusoidal signals. Those
methods are the so-called supervised methods. Some ex-
amples are the individual template based CCA (IT-CCA)
[12], the extended CCA (eCCA) [13], the multiway CCA
(MwayCCA) [14], the multiset CCA (MsetCCA) [15], the
correlated component analysis (CORRCA) [16], or the task-
related component analysis (TRCA) [17]. These methods
achieve better performance than the standard CCA, although
the improvement is dependent on the number of training tri-
als. Recently, the multi-stimulus paradigm has been proposed
to overcome this challenge [18]. In parallel, Chen et al. [19]
introduced a filter bank approach (FBCCA) to take advantage
of the harmonics information and enhance the performance
without requiring training data.

In this work, we investigate the suitability of combining
two types of approaches in the CCA framework: (i) the
FBCCA to extract as much information as possible from
the harmonics, and (ii) the reference signals optimization to
adapt the reference signals to the individual characteristics
of the user. In particular, we evaluate the performance of
MwayCCA, L1-MwayCCA, MsetCCA and IT-CCA within
a FB implementation in order to motivate the development
of new paradigms which follow this strategy to achieve the
improvement of high-speed BCI spelling systems.

II. MATERIALS AND METHODS

A. Dataset

This study uses the publicly available benchmark dataset
for SSVEP [20]. It consists of SSVEP signals from 35
subjects collected using a 64-channels EEG system. For
each subject, the experiment included six blocks, each one
containing 40 trials corresponding to 40 characters in the
speller. Each of these characters is coded within a frequency
range of [8−15.8 Hz], with 0.2 Hz separation between them.

B. Preprocessing

Following [19] preprocessing steps, the signals are band-
pass [5−90 Hz] filtered and the initial and last 0.5 seconds
of every trial are discarded. Then, the same nine parietal and
occipital channels (Pz, PO3, PO5, PO4, PO6, POz, O1, Oz
and O2) are used.
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C. Existing methods
1) Canonical Correlation Analysis (CCA): A multivariate

statistical method used to infer the correlation between two
multidimensional variables, X ∈ RI1×J and Y ∈ RI2×J .
It aims to find two vectors w ∈ RI1 and v ∈ RI2 which
maximize the correlation between the linear transformations
x̃ = wT X and ỹ = vT Y, through optimizing the expression:

ρ = max
w,v

E[x̃ỹT ]√
E[x̃x̃T ]E[ỹỹT ]

, (1)

where ρ denotes the correlation coefficient. To implement
CCA, we designed M matrices corresponding to the M stim-
ulation frequencies (fm : m = 1, 2, . . . ,M ) of the SSVEP
system. Each matrix (denoted as Ym), was constructed as a
series of sine-cosine waves and work as the reference signal
at the mth stimulus frequency and their H harmonics (hence,
I2 = 2H). On the other hand, X represents the multi-channel
EEG signal, where I1 denotes the number of channels and J
the number of time points of the signal. Finally, solving the
optimization problem between the EEG data and each group
of reference signals, the set with the highest correlation is
considered the selected frequency.

2) Multiway CCA (MwayCCA): This method aims to
optimize the reference signals by maximizing the correlation
between the recorded EEG tensor, χ ∈ RI×J×K (channel ×
time × trial), and the reference sinusoidal waves. MwayCCA
maximizes the correlation between the linear combinations
x̃ = χ ×1 w̃T

1 ×3 w̃T
3 (where ×n represents the mode-

n product) and ỹ = vT Y through finding the coefficients
w1 ∈ RI , w3 ∈ RK and v ∈ R2H , leading to an equivalent
optimization problem as in Eq. (1). The optimal signal
reference for a specific frequency fm is modeled as:

zm = χ×1 w̃T
1 ×3 w̃T

3 , zm ∈ RJ . (2)

To minimize the possible negative contribution to the refer-
ence signal optimization of those trials with artifacts, Zhang
et al. [14] proposed the implementation of L1-regularization
on trial-way, leading to the variation L1-MwayCCA.

3) Multiset CCA (MsetCCA): A generalization of CCA, in
which the linear relations between more than two sets of vari-
ables are analyzed. This method extracts common features
along various trials to develop more natural references than
artificial sinusoids. In [15], MsetCCA is implemented to find
the spatial filters w1,m, . . . ,wK,m that maximizes the overall
correlation among the canonical variates z̃1,m, . . . , z̃K,m,
where z̃i,m = wT

i,mXi,m. These canonical variates represent
the common features shared among the training data, and the
optimized reference signal for a certain stimulus fm can be
calculated as:

Ym = [z̃T1,m, . . . , z̃
T
K,m]T , Ym ∈ RK×J . (3)

4) Individual Template CCA (IT-CCA): In this case, the
reference template is obtained by averaging the training trials
of each target as shown below:

Ym =
1

K

K∑
k=1

Xk, Ym ∈ RI×J . (4)

5) Filter Bank CCA (FBCCA): The goal of FB analysis
is to decompose SSVEPs into sub-band components so that
independent information hidden in the harmonic components
can be extracted more efficiently than with standard CCA.
We generated n sub-bands applying a high-pass zero-phase
Butterworth filter with the cut-offs frequencies for the nth

band in the 8n Hz. CCA is then applied and for each set
of n sub-bands, the obtained correlations are weighted and
combined according to:

ρ̃k =

N∑
n=1

w(n) · (ρnk )2, (5a)

w(n) = n−a + b, n ∈ [1, N ], (5b)

where N represents the total number of sub-bands, a, b are
two hyperparameters that define the importance of each sub-
band, and ρnk represents the obtained correlation for the nth

sub-band and the kth stimulus. Finally, the maximum value
of ρ̃k is used to classify the selected frequency.

D. Filter Bank Enhanced Methods

Our proposal of incorporating the sub-band decomposition
to the supervised algorithms represents a natural extension
of the FB paradigm and it is applicable to each one of the
aforementioned methods.

Consider the EEG tensor χm ∈ RI×J×K (channel × time
× trial) for a particular stimulus frequency, fm. Firstly, the
FB decomposition to every signal is performed, resulting in
the four-way tensor, χ′m ∈ RI×J×K×N . Then, the desired
optimization method is applied in each of these decomposed
sub-bands. Each stimulus frequency thus requires references
Ym ∈ R2H×J×N , where the third dimension corresponds
to each sub-band. When necessary, the artificial sinusoids
for each nth sub-band started using frequencies from the
nth harmonic, since the nth sub-band mainly aims to extract
information from the nth harmonic. Finally, CCA between
the sub-band components of new test data and the optimized
reference signals is applied and the correlations are combined
using Eq. (5a).

E. Experimental Evaluation

We use a leave-one-out cross-validation at block level
to evaluate the performance. The nine selected channels
are used in the EEG tensor. The number of harmonics
(Nh) in the reference signals for the standard CCA and
MwayCCA methods is set to 3, while the number of sub-
bands (Nbands), and the hyperparameters a and b for the FB
methods is selected using grid-search and cross-validation
in the FBCCA for a fixed time window of 1.5 seconds.
The grid-search is performed on the ranges a ∈ [1, 2], and
b ∈ [0, 1] with steps of 0.25 and Nbands from 3 to 6. The
values with the highest accuracy are selected. In the case of
L1-MwayCCA, the regularization parameter, λ3, is adjusted
at subject level using cross-validation with values between
0.01 and 0.1 with steps of 0.01.
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The accuracy and the information transfer rate (ITR in
bits/minute, Eq. (6)) are used as performance metrics.

ITR =
60

T

(
log2M + P log2 P + (1− P ) log2

1− P
M − 1

)
,

(6)
where M denotes the number of classes, P the classification
accuracy and T the average target selection time (in seconds).
In our case, T is the time window employed, which is 0.64s
(0.5s of a target cue presented to the subject, and 0.14s to
the gaze shifting time) [20]. One-way ANOVA is performed
to analyze the significant differences in each time window.
Then, paired performance differences are statistically an-
alyzed through post-hoc paired sample t-tests. Bonferroni
correction is applied to deal with the increased risk of type I
errors due to repetitive testing. The results are presented as
mean ± standard error of the mean.

III. RESULTS

A. Overall Performance Comparison

One-way ANOVA showed significant accuracy differences
in all the time windows for the compared methods. The low-
est p-values are obtained for data lengths t = 0.75 s (p-value
< 10−6) and t = 1.0 s (p-value < 10−5). Figure 2 depicts the
post-hoc paired t-test differences in the performance between
the different methods and their FB extension. Results showed
that the FB implementation outperforms the standard version
of the methods, with the only exceptions of data lengths of
0.25 s and for the MsetCCA and ITCCA implementations
for short time windows (time ≤ 0.75 and 0.5 s, respectively).
In all the cases, the maximum ITR is obtained with the FB
approach (See Table I). The maximum ITR is achieved by the
FBMwayCCA method (134.8 ± 8.4), while its regularized
version gave very similar results, although statically different
(t-test, ITR comparison p-value < 0.05). T-paired tests did
not show significant differences between the maximum ITR
of the L1-MwayCCA, MwayCCA, FBITCCA, FBMsetCCA
and FBCCA. The obtained results with the FBCCA are
in accordance with the graphical results presented in [20].
Slightly decreased performance in our model for shorter
times than one second might be attributed to the use of
a different filter type in the sub-band decomposition, an
inferior number of sub-bands, or the number of harmonics
in the reference sets.

TABLE I
AVERAGE PERFORMANCE OF EACH METHOD FOR THEIR MAXIMUM ITR

Method Time (s) Accuracy ITR (bits/min)
CCA 1.75 0.74 ± 0.04 84.4 ± 6.3
FBCCA 1.5 0.81 ± 0.03 107.2 ± 6.0
MwayCCA 1.0 0.71 ± 0.04 114.2 ± 9.1
FBMwayCCA 1.0 0.79 ± 0.04 134.8 ± 8.4
L1-MwayCCA 1.0 0.71 ± 0.04 114.5 ± 9.2
L1-FBMwayCCA 1.0 0.79 ± 0.04 133.6 ± 8.5
MsetCCA 1.0 0.65 ± 0.04 103.2 ± 9.7
FBMsetCCA 1.25 0.77 ± 0.04 113.5 ± 8.5
ITCCA 1.0 0.64 ± 0.04 99.9 ± 9.5
FBITCCA 1.25 0.77 ± 0.04 113.9 ± 9.4

B. Averaged Accuracy and Computational Time

A large number of decomposed sub-bands implies the
involvement of higher frequencies ranges, which potentially
can increase the performance of the method. However, the
progressive decrease in the SNR of the higher harmonics
limits the improvement. Moreover, using more sub-bands
implies increasing the computational time.

Figure 1 shows the required time for obtaining a one-
stimulus optimized reference (training time), and the time
for classifying one SSVEP-stimuli using 1.25 s signal length.
This is measured using MATLAB R2020a on an Intel Core
i7-10510U 1.80 GHz CPU, 15.8 GB RAM. In every case,
increasing the number of sub-bands implies increasing the
computational time, but the accuracy reaches its maximum
value when using between 3 and 5 sub-bands and then
keeps steady or decreases. The standard FBMwayCCA im-
plementation requires the maximum training time, although
the computational cost is negligible when compared to the
expended time on the training recording process. The testing
time using the optimal number of sub-bands is always below
0.05 seconds, confirming the feasibility of the suggested
approach.

IV. DISCUSSION AND CONCLUSIONS

This work investigated a new approach that takes advan-
tage of two of the most common CCA-based methodologies.
The FB allows better use of the harmonic’s hidden informa-
tion, while the supervised algorithms allow taking advantage
of the individual subject characteristics.

All FB methods showed significantly increased perfor-
mance when compared with their standard version, and better
performance when compared with the standard FBCCA
method. This approach suggests that it is able to extract
more information from the harmonic signals than the ordi-
nary FBCCA approach. The best results are achieved using
FBMwayCCA. Previous studies [15], [21], [22] pointed out
a better performance of the MsetCCA and IT-CCA methods
over the MwayCCA. However, those studies used more trials,
so our study suggests increased reliability on MwayCCA if
fewer trials are available.

The results evince the relevance of harmonics to obtain
more accurate and faster SSVEP based BCI-speller systems.
The combination of FBCCA and supervised methods allows
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Fig. 1. Averaged accuracy and computational times using a fixed window
time of 1.25 seconds.
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Fig. 2. Accuracy (top) and information transfer rate (below) of the different methods in their standard implementation (in blue) and filter bank extension
(in orange), using time windows between 0.25 and 5s with steps of 0.25. Note that ∗ denotes p < 0.05, ∗∗ denotes p < 0.01 and ∗ ∗ ∗ p < 0.001.

taking advantage of the individual patient characteristics
and harmonics information. Our results clearly motivate the
integration of the FB approach in future developments.
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