
  

 
 

Abstract— Electrodermal activity (EDA) has been found to be 
a highly sensitive, accurate and non-invasive measure of the 
sympathetic nervous system’s activity and has been used to 
extract biomarkers of various pathophysiological conditions 
including stress, fatigue, epilepsy, and chronic pain. Recently, 
various robust signal processing techniques have been developed 
to obtain more reliable and accurate indices that capture the 
meaningful characteristics of the EDA using data collected from 
laboratory-scale devices. However, EDA also has the potential to 
monitor such physiological conditions in active ambulatory 
settings, for which the developed tools must be deployed in 
wearable devices. In this paper, we studied the feasibility of 
obtaining the highly-sensitive spectral indices of EDA using a 
wearable device. EDA signals were collected from left hand 
fingers using a wearable device and a laboratory-scale reference 
device, while N=18 subjects underwent the Head up Tilt test and 
the Stroop test to stimulate orthostatic and cognitive stress, 
respectively. We computed two time-domain indices, the skin 
conductance level (SCL) and nonspecific skin conductance 
responses (NS.SCRs), and two spectral indices, the normalized 
sympathetic components of the EDA (EDASympn), and the 
time-varying EDA index of sympathetic control (TVSymp). The 
results showed similar performances for EDASympn and 
TVSymp indices across both devices. While spectral indices 
obtained from both devices performed similarly in response to 
orthostatic and cognitive stress, time-domain exhibited large 
variation when obtained by the wearable device. Further 
research is required to develop and refine such devices, as well 
as the indices used to analyze EDA results.    
 

Clinical Relevance— This study proves the feasibility of 
obtaining spectral indices of EDA using a wearable device, which 
can be used to develop wearable tools to detect pain, stress, 
fatigue, between others. 
 

I. INTRODUCTION 

Electrodermal activity (EDA) has recently increased in 
popularity due to its sensitivity as a measure of sympathetic 
activity. In measuring changes in the conductance of skin, 
EDA acts as a method for evaluating the state of the autonomic 
nervous system in addition to the cognitive activity of a subject  
[1]–[5]. Obtained in a noninvasive and direct process, EDA 
has proven to be an accurate and useful metric in studies 
observing a range of conditions including emotional arousal 
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[6], pain [7] and stress [8],[9]. However, the majority of 
research utilizing EDA signals is conducted with large, 
laboratory designed devices that limit the potential EDA has 
to be used as a measure in ambulatory settings. By 
incorporating EDA functionality into wearable devices, it is 
possible to provide sensitive, accurate, and real-time metrics 
similar to those currently produced in research laboratories in 
an unobtrusive and practical manner. 

High sensitivity measures of a subject’s sympathetic tone 
are needed, as they provide means of monitoring and treating 
various conditions related to the impairment of sympathetic 
control [10]. Traditionally, the analysis of EDA has been in the 
time domain [1], using two highly variable measures, skin 
conductance level (SCL) and nonspecific skin conductance 
responses (NS.SCRs) [11]. Recent studies have also used a 
normalized time-invariant frequency domain analysis of EDA 
(EDASympn) which has demonstrated lower variability 
compared to SCL and NS.SCRs, but still only marginally 
acceptable consistency in results [11].  

Recently, we have created a technique to improve upon 
these metrics by accounting for the time-varying characteristic 
of the sympathetic tone using a time-varying analysis of EDA 
referred to as TVSymp [12]. This index was developed using 
a variable frequency complex demodulation, a time-frequency 
spectral analysis technique and a high time-frequency 
resolution to develop and index of sympathetic tone. TVSymp 
is the mean spectral amplitudes in the frequency band 
associated with the sympathetic tone of the EDA signals. 
When compared to the time-domain and time-invariant indices 
such as heat rate variability, SCL, NS.SCRs, and EDASympn, 
TVSymp proved to be the most sensitive to applied stimuli.  

TVSymp has proven to be a reproducible index of EDA 
activity in various applications [13] including dental pain [14], 
dehydration [15], stress [16]. In accurately quantifying various 
forms of sympathetic activity, its promising results not only 
demonstrates consistency but enables future applications and 
studies with EDA. An accurate understanding of the 
autonomic nervous system’s dynamics can lead to improved 
treatment and interventions related to the performance and 
health of patients with related conditions. Wearable devices 
are one of the most obvious implementations of such a 
sensitive and versatile measure like EDA. Several studies have 
looked into collecting EDA data from wearable devices, such 
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as exploring its ability to treat anxiety [17] or reduce risk on 
construction sites [18]. Similar studies could benefit from a 
more reliable form of EDA analysis for wearable devices such 
as TVSymp. 

TVSymp was developed using data acquired by an 
industry standard device (ADINSTURMENTS GSR Module) 
and digitized with a standard module (PowerLab). Given that 
the resulting TVSymp index has provided consistent results on 
data from standard references devices, it is important to see its 
ability to serve as a metric for EDA data produced by a 
wearable device. We hypothesized that when compared to 
those obtained using an industry standard device, the spectral 
indices derived from EDA data produced by a wearable device 
would show equally accurate and sensitive results.  

To test our hypothesis, we obtained EDA data from 
subjects using an industry standard device for a reference as 
well as a wearable device. From the outputs of these two 
devices we computed an array of traditional time-domain and 
spectral EDA indices; SCL, NS.SCRs, EDASympn, and 
TVSymp. The differences in mean index values and the 
variability of the different indices were compared between the 
two devices. 

II. METHODS AND MATERIALS 

A. Subjects 
All of the procedures were approved by the Institutional 

Review Board (IRB) for human subject research at the 
University of Connecticut. Eighteen healthy volunteers (8 
males, 10 females) of ages ranging from 19 to 36 years old 
were enrolled in this study. No gender related differences have 
been reported for EDA or sympathetic function. Consent was 
given by subjects after reviewing the subject protocol 
approved by the Institutional Review Board at the University 
of Connecticut.  

B. Protocol 
The experiment was conducted in a quiet, moderately lit 

room with an ambient temperature of 26-27 ºC. To induce a 
variety of sympathetic arousal types, the subjects underwent 
two isolated tests. The first test was the 70° Head up Tilt 
(HUT) stand test to simulate orthostatic stress. The second test 
administered was the Stroop task to simulate cognitive stress. 
Before each test, the subject was in supine position for 2 

minutes to establish a baseline reading. For the HUT test, after 
the baseline was established, subjects were tilted from 0 to 70° 
and remained in the angled position for 2 minutes. Once 
returning back to supine position to reestablish the baseline for 
an additional two minutes, a computerized version of the 
Stroop test [19] was administered for a final two minute 
period. The tests were conducted in the same order using the 
same protocol for each subject. 

C. Materials 
EDA signals were simultaneously recorded throughout the 

experiment using two devices: a laboratory-scale device 
(ADINSTRUMENTS GSR module), and a wearable device 
(Shimmer3+ GSR Unit). EDA data were collected from the 
left hand of the subject using the two different devices. Two 
stainless steel electrodes from the standard device were placed 
on the index and middle fingers. Additionally, two stainless 
steel electrodes from the wearable device were attached to the 
ring and middle fingers. The EDA data from both the reference 
device and the wearable device were sampled at a frequency 
of 1000Hz. Both sets of data were later down sampled to 8 Hz 
as the majority of the desired signals in EDA data consists of 
low frequency components [11].  

C. Data selection and processing  
To compute the EDA indices, the raw data were passed 

through a zero phase lowpass FIR filter (cut-off frequency = 1 
Hz). To analyze the various indices for each of the two stress 
stimuli, the raw EDA data from both of the devices were split 
into sections corresponding to each test. These two sections 
were then subdivided into two periods representing a 
relaxation state which consisted of the hemodynamic 
stabilization (baseline), and a stress state (test), for each test. 
The 2 portions of the HUT test data consisted of 90 seconds of 
baseline activity prior to the table tilt and 90 seconds of activity 
starting from the subject arriving in a tilted position. As 
outlined in Table 1, the Stroop consisted of 90 seconds of 
baseline activity before the start of the Stroop and 90 seconds 
of activity starting from the presentation of the Stroop task.   

EDA signals are decomposed into tonic and phasic 
components [20]. The SCL and NS.SCR for each portion of 
data were calculated using a tonic/phasic decomposition of the 
data based on non-negative sparse deconvolution algorithm 
referred to as SparsEDA [22] which has proven to be faster 
and more efficient than alternatives [4]. SCL (expressed in 
microsiemens, µS) is a measure related to the slow shifts of 
EDA, computed as a mean of the tonic component of each 
EDA segment.  The skin conductance responses (SCRs) are 
those rapid transient events contained in the EDA signals (Fig. 
1).  The non-specific SCRs (NS.SCRs) are the number of 
SCRs in a period of time, expressed as the number of responses 
per minute [20].   

EDASympn and TVSymp were calculated for the data 
using the processes outlined in previous works, using time-
invariant (power spectral density) and time-varying (variable 
frequency demodulation) approaches, respectively [11], [12]. 
EDASymp comprises the power of EDA in the range 0.045–
0.25 Hz, and TVSymp uses the components of EDA in the 
range 0.08–0.24 Hz. The mean index value for every data 
period over both devices was computed from each subject’s 
individual resultant indices. These values are shown Table 2 

TABLE I.  PROTOCOL SUMMARY AND SELECTED DATA 

Duration 
(s) 

Data 
Selected 

(s) 
Activity Remarks 

120 Last 90 PreTilt: Flat table, relaxing 
with eyes closed Baseline 

30 - 
Start table tilt 

 Orthostatic 
Stress 

120 First 90 PostTilt: Subject remains in 
titled position 

150 Last 90 PreStroop: Subject returns 
to supine, relaxation Baseline 

120 First 90 PostStroop: Perform Stroop 
task 

Cognitive 
Stress 
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along with the mean coefficient of variation (CV) computed as 
the ratio between the standard deviation and the mean, for each 
index. 

III. RESULTS 

The raw EDA output for a given subject can be seen in Fig. 
1 for the duration of both tests administered in the experiment 
for both the reference device and the wearable. Note that 
during the periods prior to the application of a test (indicated 
by the yellow lines) there were no positive SCRs as the subject 
remains relaxed.  Once both the HUT test and Stroop tests 
began, there was a clear response observed as the amount of 
NS.SCRs dramatically increased. This pattern remained 
constant throughout all of the subjects. 

The SCL, NS.SCRS, EDASymp, and TVSymp values of 
all subjects for both wearable and reference devices are 
presented in Table I. The SCL values showed a significant 
difference (p<0.05) between the baseline period and test 
period for both devices during the HUT and Stroop test. The 
mean values for the NS.SCRs also showed a significant 
difference between the baseline and the test data, however only 
for the HUT test. The TVSymp values followed the same 
pattern. The indices for EDASympn had significant difference 
in both devices for the Stroop task but did not indicate a 
difference for the HUT test results. 

 To assess the variability of the indices between the 
reference and wearable outputs, the mean CV for each index 
is presented on the bottom row of Table 1 and Fig. 2. The CV 
values for the mean SCL and NS.SCRs showed a significant 
difference between the reference device and the wearable 
device. The mean CV for the wearable SCL was 2.08 times 
larger than the mean CV value for the reference of the same 
index. Reversely, the mean CV values for both EDASympn 
and TVSymp indices were relatively similar to one another for 
both the wearable and reference devices. The difference in CV 
between the wearable and reference was less than 0.1 for 
TVSymp. 

IV. DISCUSSION 
The presence of significant differences in mean values 

between rest and test values for all four indices demonstrate 
that all can capture the sensitivity of EDA to cognitive and 
orthostatic stress using either a laboratory-scale or a wearable 
device. Specifically, SCL, NS.SCR and TVSymp indices 

showed sensitivity to the orthostatic stress induced by the HUT 
test. Similar sensitivity has been seen for a range of tests in 
many EDA related studies that measure time-varying and 
spectral EDA indices [4], [23]. It is also important to note that 
although there was an increase in the mean values of NS.SCR 
and TVSymp, the lack of a significant differences in response 
to the Stroop Task could be attributed to the short recovery 
period after the HUT. This could have prevented subjects from 
reestablishing an accurate baseline reading before the 
following test as previous studies have used 2-5 minutes 
[8][11].  

The similarities in statistical difference appear in pairs for 
both wearable and reference devices and supports our initial 
hypothesis that the wearable device would perform in a similar 
manner to reference device. This is further supported by the 
CV values for the two spectral indices EDASympn and 
TVSymp that showed the same amount of variation for both 
types of devices. While the wearable CV values were distinctly 
higher for SCL and NS.SCR indices than those of the reference 
device, these values can be attributed to the inherent variant 

TABLE II.  RESULTS FOR EDA INDICES 

Task Stage 

SCL NS.SCRs EDA Sympn TVSymp 

Reference Wearable Reference Wearable Reference Wearable Reference Wearable 

Stroop BL 6.18 +/- 4.2 2.81 +/- 3.87 1.06 +/- 0.639 0.889 +/- 0.719 0.129 +/- 0.157 0.0813 +/- 0.135 0.661 +/- 0.41 0.699 +/- 0.37 

Test 9.35 +/- 4.98* 3.37 +/- 4.51* 1.47 +/- 1.28 0.861 +/- 1.1 0.245 +/- 0.201* 0.227 +/- 0.187* 0.959 +/- 0.5 0.869 +/- 0.544 

HUT BL 8.56 +/- 6.25 3.16 +/- 4.27 1.11 +/- 0.948 0.472 +/- 0.581 0.166 +/- 0.199 0.13 +/- 0.163 0.589 +/- 0.41 0.513 +/- 0.37 

Test 12.8 +/- 7.41* 3.91 +/- 4.63* 2.78 +/- 1.75* 1.94 +/- 1.63* 0.254 +/- 0.181 0.181 +/- 0.127 1.32 +/- 0.313* 1.34 +/- 0.416* 

Mean CV  0.630  1.312  0.739  1.037  0.986  
1.110 

  
0.500  0.522  

Values are expressed as means +/- SD. *Significant difference compared to baseline stage (P<0.05). TVSymp, time-varying index of sympathetic skin conductance level; NS.SCRs, nonspecific skin 
conductance responses; EDASympn, normalized sympathetic component of the EDA; SCL, skin conductance level ---- BL, baseline reading period; Test, applied stress test period; CV, Coefficient of 
variation 

 

 
 

 
Figure 1. Raw EDA data from a given subject. For HUT test data 
portions, the yellow lines mark the start and end of the subject being 
tilted, this data is not included in the analysis. For Stroop test the 
yellow line marks start of the test. 
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behavior of these indices that was extenuated by 
characteristics of the wearable technology such has 
susceptibility to noise and motion artifacts [17], [24]. The 
difference that arises in CV values between SCL, NS.SCR and 
EDASympn, TVSymp are important to note moving forward 
as they demonstrate that the latter indices are more accurate at 
reading EDA data from the wearable device. 

The main goal of this work was to determine if a wearable 
device is able to produce similar results to a laboratory-scale 
reference device when comparing the spectral EDA indices 
derived from the data. Traditional time-domain indices, SCLs 
and NS.SCRs, were included in the analysis to provide a more 
thorough analysis of the indices of EDA obtained from a 
laboratory-scale and a wearable device. The low variation of 
the spectral indices between a wearable and reference device 
provided promising results that spectral analysis of EDA could 
provide the means to capture the signal’s full potential in a 
wearable format. However, one of the most important points 
of interest to note from this work is that the wearable devices 
consistently had higher variations than the references. 
Combining this trend with the lack of sensitivity for the  
spectral indices across one of the two tests administered, it is 
clear that further development and refinement is still required. 
For wearable devices which utilize EDA to be considered 
practical and relevant, it is crucial that they are designed to 
perform just as accurately and efficiently as the laboratory-
scale devices used in foundational EDA research where such 
accurate indices were developed.  
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Figure 2. Coefficient of variation (CV) for reference (laboratory-scale) 
device and wearable devices for SCL, NS.SCRs, EDASymp, and 
TVSymp.  
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