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Abstract— We present the implementation to cardiovascular
variability of a method for the information-theoretic estimation
of the directed interactions between event-based data. The
method allows to compute the transfer entropy rate (TER)
from a source to a target point process in continuous time,
thus overcoming the severe limitations associated with time
discretization of event-based processes. In this work, the method
is evaluated on coupled cardiovascular point processes rep-
resenting the heartbeat dynamics and the related peripheral
pulsation, first using a physiologically-based simulation model
and then studying real point-process data from healthy subjects
monitored at rest and during postural stress. Our results docu-
ment the ability of TER to detect direction and strength of the
interactions between cardiovascular processes, also highlighting
physiologically plausible interaction mechanisms.

I. INTRODUCTION

The transfer entropy (TE) is a well-known measure quan-
tifying the directed information flow between stochastic
processes [1]. It is widely used in many domains of science
and engineering, including neuroscience where it is com-
monly employed to assess directional interactions between
neurophysiological signals [2]; in cardiovascular variability
analysis, TE has been used successfully to assess the direc-
tion and strength of the interactions between heart period,
arterial pressure and respiration variability and to investigate
the underlying physiological mechanisms [3], [4].

The TE has been originally defined and is typically
computed for discrete-time processes, i.e. processes defined
at discrete time instants which represent the sampling rate
of continuous-time signals or the rate of a physiological
oscillator (e.g., the cardiac pacemaker). In discrete time, the
definition of TE is well-established and a number of practical
approaches exist to provide data-efficient estimates [2], [4].
The definition of TE for continuous-valued processes, i.e.
processes defined at each time instant with arbitrarily small
resolution, is much more cumbersome. Recent theoretical
work has defined a formalism to express the TE accumulated
in continuous time over finite time intervals, deriving the
expression of the corresponding TE rate (TER) [5]. Such
work also highlighted the simplified form assumed by TER in
the particular case of point processes, and was followed very
recently by the formulation of an accurate non-parametric
estimator of the TER for this class of processes [6].
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The work above has great practical relevance, as it opens
the way for a reliable non-parametric, continuous-time esti-
mation of the information transfer for event-based processes;
previous efforts have mostly relied on parametric approaches
[7], which have low flexibility, or on time discretization
[8], which suffers from issues of bias and data requirement.
We have recently implemented the formalism for the study
of neural spike trains [9], and in this study we use it to
assess the rate of information transfer between cardiovascular
point processes. Specifically, we focus on cardiovascular
interactions assessed between the cardiac pacemaker, studied
by the heartbeat timings measured from the ECG, and the
times of arrival to the body periphery of the sphygmic
wave, measured through finger photoplethysmography. These
interactions, which reflect the physiological mechanisms
modulating the arterial pressure and the contractility of the
ventricles and of the arteries [10], [11], are investigated in a
simulated point process model of coupled heart rate and pulse
rate variability and in real point process series measured from
healthy subjects at rest and during postural stress.

II. METHODS

A. Transfer Entropy Rate of Bivariate Point Processes

Given two possibly coupled systems whose evolution over
time is mapped by the stationary stochastic processes X
and Y , the directed transfer of information from Y to X
is commonly assessed by the transfer entropy (TE) defined
as TY→X = I(Xt;Y

−
t |X−t ), where Xt denotes the present

state of X , X−t and Y −t denote the past history of X and
Y , and I(·; ·|·) denotes conditional mutual information. The
TE is well-established and widely used in discrete time, i.e.
for processes defined at discrete time instants tn, n ∈ Z.
On the other hand, its formulation in continuous time, i.e.
for processes defined at each time instant t ∈ R, relies on
recent theoretical work [5] which evidenced the importance
of defining a TE rate (TER) to ensure convergence of
the measure. Specifically, the continuous-time TER from a
source process Y to a target process X is defined as: [5]

ṪY→X =
d

dt
E[T [t0,t]

Y→X(x[s,t], y[s,t))], (1)

where T [t0,t]
Y→X(x[s,t], y[s,t)) is the so-called pathwise transfer

entropy which represents the accumulated predictive capacity
transferred from Y to X on the interval [t0, t] considering
the path realizations x[s,t] and y[s,t) with s ≤ t0 < t. The
important work [5] derived also a formulation of the TER
valid for point processes, i.e. processes described entirely by
the times of occurrence of non-overlapping events, or spikes.
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Given two point processes X = {xi} and Y = {yj}, where
xi and yj are the times of the ith event in X and of the jth

event in Y , the TER is defined as: [5], [6]

ṪY→X = λXEpx

[
ln
λX,xi|X−

xi
,Y −

xi

λX,xi|X−
xi

]
, (2)

where λX = NX/T is the average event rate of X , with
NX the number of target events and T the duration of the
period analyzed. In Eq. (2), λX,xi|X−

xi
and λX,xi|X−

xi
,Y −

yi

are the instantaneous event rates of the target process X
evaluated at the time of its ith event xi, conditioned re-
spectively on the history of X and on the histories of
both X and Y ; the unconditioned instantaneous event rate
of the process X , evaluated at the arbitrary time u, is
λX,u = lim∆u→0 pu

(
NX,u+∆u − NX,u = 1

)
/∆u. At this

point it is worth noting that, while the probability pu is
defined at any time point u ∈ R, the expectation in (2)
is taken over the probability px of observing a quantity
at the time of target events xi, i = 1, . . . , NX [6]. This
important distinction allows, after expressing the conditional
event rates in terms of pu, making a Bayes inversion and
noting that lim∆u→0 pu(·|NX,u+∆u − NX,u = 1

)
= px(·),

to reformulate the expression of the TER as: [6]

ṪY→X = λXEpx

[
ln

(
px(X−xi

, Y −xi
)

pu(X−xi , Y
−
xi )
·
pu(X−xi

)

px(X−xi)

)]
, (3)

showing that the TER depends on probabilities of the process
histories X−xi

and Y −xi
, evaluated at target events and at arbi-

trary time points (respectively, px and pu), whose statistical
average is taken only at target events (i.e., over px).

Eq. (3) provides the basis for estimating the TER in
continuous time evaluating quantities at target events and
representing histories by inter-event intervals. The estimation
strategy followed here relies on creating history embeddings
for the history of the target process and for the joint history
of target and driver processes, followed by utilization of the
k-Nearest-Neighbour (kNN) estimator to evaluate the four
entropy terms resulting from (3) [6], [9]. The history embed-
ding of the target X referred to the event xi is approximated
taking l inter-event intervals, i.e. X−xi

≈ X l
xi

, where the kth

element of X l
xi

is the inter-event interval xi−k+1 − xi−k.
The history embedding of the driver Y referred to xi is
approximated as Y −xi

≈ Y l
xi

= [xi − yp, Y
l−1
yp

], where yp
is the most recent driver event preceding xi. These history
embeddings are then used in (3), which is expressed in terms
of entropies to yield the TER estimate:

ˆ̇TY→X = λX [Ĥpu
(X l

xi
, Y l

xi
)− Ĥpx

(X l
xi
, Y l

xi
)

+ Ĥpx
(X l

xi
)− Ĥpu

(X l
xi

)]
(4)

where Ĥpx(·) and Ĥpu(·) refer to ’standard’ differential en-
tropy estimate where expectation is taken over the same prob-
ability distribution for which the log-likelihood is estimated,
and to ’cross-entropy’ estimate where the two distributions
differ [6]. Each entropy term of (4) is estimated using the
kNN estimator (e.g., [2], [4]) with parameter k indicating
the number of points used for neighbor search. Here, points

are realizations of the history embeddings of dimension
l or 2l specified in (4), and the search for neighbors is
performed within the set of realizations taken at target events
in the case of ’standard’ entropy estimation, and within a
set of realizations observed at arbitrary (randomly sampled)
time points in the case of ’cross-entropy’ estimation. The
estimation algorithm, which is described in detail in refs.
[6], [9], proceeds performing neighbor searches and range
searches optimized to estimate together the four entropy
terms in (4), in order to achieve compensation of the bias
brought by the individual terms to the overall TER estimate.

III. SIMULATION STUDY

The proposed method for continuous-time TER estima-
tion is evaluated on simulations of coupled point processes
modeling the heartbeat events and the arrival times of the
sphygmic wave in the body periphery. The process X ,
simulating the heartbeat times, is generated as a point process
following the history-dependent inverse Gaussian (HDIG)
model proposed in [12]. According to this model, given any
R-wave event xi, the waiting time until the next event, i.e.
the ith R-R interval wi, is assumed to be drawn from the
following probability density function:

p(wi, X
p
xi
, θ, λ) =

√
λ

2πw3
i

· e

−λ
(
wi − µ(Xp

xi
, θ)
)2

2µ(Xp
xi , θ)

2wi , (5)

where µ(Xp
xi
, θ) and λ are the mean and the scale parameter

of the inverse Gaussian distribution. In the HDIG model,
the mean is dependent on the history of the inter-event
intervals up to the current event xi, Xp

xi
= [wi−1, · · · , wi−p],

according to the linear autoregressive (AR) model:

µ(Xp
xi
, θ) = θ0 +

p∑
j=1

θjwi−j . (6)

This model represents, through the parameter vector θ =
(θ0, θ1, · · · , θp), the dependence of the R-R interval length
on the history of the process, accounting for autonomic
influences on heart rate variability [13]. In our simulation, we
assume that the R-R intervals exhibit lagged dependencies
up to the order p = 5, and set the coefficients {θ1, · · · , θ5}
to obtain oscillations of wi within the very low frequency
(VLF), low frequency (LF) and high frequency (HF) bands
typical of heart rate variability [13]; this was achieved
simulating for the AR model (6) a transfer function with
two complex-conjugate poles with modulus ρLF = 0.8 and
phases ±2π·0.1 rad, two other complex-conjugate poles with
modulus ρHF = 0.92 and phases ±2π · 0.25 rad, and a real
pole with modulus ρV LF = 0.6 [14]. The mean and scale
parameters of the inverse Gaussian distribution are θ0 = 1 s
and λ = 600 s. The R-R intervals generated by a run of the
simulation are reported in Fig. 1 together with their power
spectral density evidencing VLF, LF and HF oscillations.

After generating the heartbeat point process X as de-
scribed above, the point process Y simulating the systolic
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Fig. 1. (b) R-R intervals modeled as a history-dependent inverse Gaussian
point process. (b) Power spectral density evidencing slow oscillations in the
VLF band as well as LF and HF oscillations at ∼ 0.1 Hz and ∼ 0.25 Hz.

times is obtained generating its events as:

yi = xi + τ + ui, (7)

where τ = 0.3 s is the simulated mean pulse arrival time
and ui is a random time jitter modeling the part of the
systolic time interval variability independent from heart rate
variability. Here, values of ui are drawn from the uniform
distribution U(−δτ,−δτ+δwi); with this choice, the param-
eter δ modulates the strength of the interaction from X to Y :
when δ = 0 we have yi = xi + τ , corresponding to constant
propagation time of the sphygmic wave; when δ = 1 we have
maximum uncertainty in the propagation times, which can
take any value within the R-R interval (yi ∈ [xi, xi + wi]).

The analysis of TER is performed on 20 realizations of
the simulation, each generated with NX = 300 simulated
heartbeats. For each pair of simulated spike trains, the
TER is computed along the two directions of interaction
using k = 10 neighbors. Results are presented showing the
distribution across realizations of ˆ̇TX→Y and ˆ̇TY→X for the
analysis performed with length of the history embedding set
at l = 1 (Fig. 2), and showing the distribution of ˆ̇TX→Y

for embedding lengths varying from l = 1 to l = 5 (Fig. 3).
Moreover, in all simulations the statistical significance of the
estimated TER values is assessed using surrogate data; pairs
of surrogate event processes consist of the realization of the
heartbeat x = {xi} (left untouched) and of a randomized
realization of the systolic time process obtained adding to
each simulated R-wave time a random propagation time
(y = {yi = xi + ui}, ui ∈ U(0, wi)).

The simulation results show that the TER computed along
the coupled direction X → Y is high and statistically
significant for fully coupled processes (δ = 0), and decreases
progressively towards non-significant values as the jitter
imposed to the propagation times increases (Fig. 2a); the
TER values are non-significant for δ ≥ 0.5. Along the
uncoupled direction Y → X , the TER values are very low
and almost never statistically significant for all values of δ
(Fig. 2b). Increasing the length of the history embedding up
to the memory imposed in the HDIG model (l = p = 5), the
TER X → Y takes lower values but preserves the decreasing
trend observed at increasing δ (Fig. 3a); interestingly, at
increasing the uncoupling (δ ≥ 0.3) statistical significance
of the TER X → Y was observed in a larger number of

0

0.2

0.4

0.6

0.8

1

-0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

a) b)YX
[nats/s]TER XY

[nats/s]TER

ẟ [s] ẟ [s]

Fig. 2. Distribution (median and 25th − 75th percentiles over 20
realizations) of the TER estimated between the simulated point processes of
the heartbeat times (X) and systolic times (Y ), computed as a function of
the de-coupling parameter δ. Gray shades denote the 5th−95th percentiles
of the distribution of TER computed over 100 surrogate pairs for each
realization, averaged across realizations.

realizations when l = 4, 5 than for smaller lengths of the
history embeddings (Fig. 3b).

IV. APPLICATION TO CARDIOVASCULAR VARIABILITY

To provide a preliminary evaluation of the presented
approach on real cardiovascular signals, we consider point-
process data from a subgroup of 20 subjects randomly
taken from the dataset of a previous study [15]. In the
study, cardiovascular variability was assessed with subjects
monitored in the resting supine position (REST) and during
postural stress evoked by tilting the subjects in the upright
position (TILT). Among the signals measured in [15], those
relevant to the present study are the ECG and the finger
photoplethysmographic arterial pressure signal, from which
the heartbeat times (times of the R-wave in the ECG) and the
times of occurrence of the systolic pressure (local maxima of
the pressure signal) were measured on a beat-to-beat basis.

For each subject analyzed in the two conditions, series
of 300 R-wave events (process X) and systolic time events
(process Y ) were considered for TER analysis. The analysis
was performed with parameters k = 10 and l = 2. Our
results document that the TER is substantial along the
direction from R-wave to systolic times (Fig. 4a), while it
is very low and often negative along the opposite direction
from systolic to R-wave times (Fig. 4b). This confirms the
expected unidirectional nature of this form of cardiovascular
interaction. Moreover, the TER from R-wave to systolic
times decreases significantly moving from the resting state to
the head-up tilt condition (Fig. 4a). This result suggests that
factors modulating the pulse rate variability independently
of heart rate, possibly related to autonomic control of pre-
ejection period and vessel contractility [11], are enhanced
during postural stress. The result is in agreement with a
previous study documenting lower agreement between heart
rate and pulse rate variability during postural stress [16].
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V. CONCLUSIONS

Cardiovascular interactions are commonly studied in the
information-theoretic domain computing the TE between
discrete-time processes mapping the heart period and systolic
arterial pressure variability [3], [15].This study introduces an
alternative approach based on the continuous-time estimation
of the TE rate between point processes mapping the heartbeat
and systolic time events. This approach, which explicitly
considers the natural point-process structure of human heart-
beats, can potentially uncover different mechanisms than
those studied by the traditional TE analysis.

Future studies should explore the potential of this approach
in more realistic simulation settings where physiological
effects such as those related pre-ejection period and pulse
transit time are considered [16], and in more challenging real
data applications where the direction of interaction between
point processes cannot be inferred a priori [9].
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