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Abstract—CT machines can be tuned in order to reduce the
radiation dose used for imaging, yet reducing the radiation
dose results in noisy images which are not suitable in clinical
practice. In order for low dose CT to be used effectively in
practice this issue must be addressed. Generative Adversarial
Networks (GAN) have been used widely in computer vision
research and have proven themselves as a powerful tool for
producing images with high perceptual quality. In this work we
use a cascade of two neural networks, the first is a Generative
Adversarial Network and the second is a Deep Convolutional
Neural Network. The first network generates a denoised sample
which is then fine-tuned by the second network via residue
learning. We show that our cascaded method outperforms
related works and more effectively reconstructs fine structural
details in low contrast regions of the image.

Index Terms—Image Reconstruction; Computed Tomogra-
phy; Computer Vision; Convolutional Neural Network

I. INTRODUCTION

Radiation exposure is a significant risk associated with X-
ray computed tomography (CT). Excessive radiation expo-
sure can have negative side effects and may cause cancer.
However reducing radiation dose also reduces the signal to
noise ratio (SNR) which may impact diagnostic accuracy.
The research community has thus proposed various noise
reduction techniques in order to denoise LDCT images such
that they may be used instead of Normal Dose CT (NDCT).
This has been challenging because the noises present in
LDCT images are non-Gaussian and spatially variant and
thus not well defined. Deep Learning and Deep Convolutional
Neural Networks (DCNNs) have recently emerged as a pow-
erful computer vision technique capable of approximating
unknown statistical distributions based on training samples.
As such, DCNNs appear to be an appropriate tool for solving
the LDCT denoising problem. DCNNs have achieved state-
of-the-art in many computer vision and image processing
tasks [1]. In medical imaging, these networks have outper-
formed other methods in segmentation [2], classification [3],
denoising [4] and more. Early work focused on development
of iterative reconstructive techniques (IR) algorithms for
Low Dose CT (LDCT) image reconstruction, however; these
algorithms are computationally expensive and may cause
artifacts in CT images. These methods require access to raw
projection data and as a result are not compatible across
devices from different manufacturers. Image post-processing
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techniques such as DCNNs on the other hand do not require
projection data and thus offer a more general and scanner
independent solution.

In the past few years, the design of efficient DCNN archi-
tectures for LDCT denoising has been researched and several
approaches proposed. Ansari et. al. proposed a Dilated Resid-
ual Learning (DRL) model architecture [5] which achieved
good performance with a relatively small network.This de-
sign used two distinct features. First, they used the benefits of
dilated convolutions for increasing the receptive field of the
network without increasing the parameter count and depth.
Second, they used residual connections [1] between layers
to allow for information from shallow layers to propagate
to deeper layers. Various GAN (Generative Adversarial Net-
work) based approaches have also been proposed [6], [7].
Yang et al. [6] used Wasserstein GAN and successfully
generated normal dose CT (NDCT) from LDCT. GANs
are able to learn a target distribution and then generate
new samples which look visually similar to samples in the
target distribution [7]. This makes GANs a powerful tool for
modelling the human visual system. Wu et. al. proposed that
instead of increasing the complexity and depth of networks,
one can use a cascade of simple CNNs [8]. Significant
research has also been done on the design of loss functions
for optimizing DCNNs. It quickly became evident that mean-
squared-error (MSE) tends to over-smooth images and cause
the loss of fine structural details. Researchers proposed linear
combinations of MSE and other loss terms such as Perceptual
Loss [6] and Structural Dissimilarity [9] in order to overcome
this limitation. Calculating the perceptual loss involves using
a pre-trained network as a feature extractor. These pre-trained
networks (such as VGG19 [10]) have been trained on very
large datasets for image classification (ImageNet) and thus
can be used to model the human visual system.

While perceptual loss has proven to be an effective loss
term in order to promote the perceptual similarity of the
images [6], we show that it can introduce patterned artifacts
into the image. These artifacts can lead to miss-diagnosis
by radiologists and should be avoided. Further, computing
the perceptual loss introduces significant additional compu-
tational load including increased training time and memory
requirements.

In this work, we propose a new cascaded network structure
(Figure 2). We use MSE to train a Least Squares GAN
(LSGAN) at the first level as a rough estimate of the target.
We show that our GAN approach is able to maintain texture
and the perceptual quality of images. In the next level, we
train the DRL network to fine tune the result by predicting the
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difference between ground truth normal dose CT images and
denoised predictions from the GAN. We show that the results
of this cascade of networks outperforms each component
network. Lastly, we show that our approach is more effective
than perceptual based approaches and produces images with
high peak signal to noise ratio (PSNR) and structural simi-
larity (SSIM) scores in addition to high perceptual quality.

II. BACKGROUND

Fig. 1. DRL Model Architecture

Fig. 2. Proposed Cascaded System Block Diagram

A. Residual Learning

Adding additional layers to neural networks has been
shown to improve performance by aiding the optimization of
a larger feature space, however; research has shown that there
is an upper bound on this benefit. As the number of layers
reaches this upper bound, training becomes problematic due
to the vanishing and/or exploding gradient problem. To over-
come this, He et. al. proposed residual networks. They show
that simply increasing the number of layers in a network
is not an effective method to improve model accuracy as
accuracy will degrade past a certain depth [1]. As a solution
they proposed a residual learning process during which the
input to a residual block is added to the output of the same
block which may contain any number of traditional layers.
The output of the residual block is then used as input to
the next residual block in a chain. This allows information
from early layers in the network to more easily propagate to
the deeper layers and allows the network to learn low level,
medium level and high level features.

B. Generative Adversarial Networks

GANs were introduced by Goodfellow et al. in 2014 [11].
The architecture includes a generator network which learns
the desired data distribution G and a discriminator network

which estimates the probability that a sample came from the
training data rather than G. While training, the networks learn
simultaneously as the discriminator improves at distinguish-
ing real samples from fake samples, the generator must then
learn to fool the discriminator. This causes the generator to
produce better and better samples.

Modified GAN approaches have been developed in order
to stabilize the training and avoid gradient based problems. In
this work, we use the Least Squares Generative Adversarial
Network (LSGAN) proposed by Mao et. al. [12].

min
D
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1

2
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[
(D(x | Φ(y))− 1)2

]
+
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]
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C. Perceptual Loss

Yang et al. define a perceptual loss based on features
extracted by the pre-trained VGG-19 network [6]. They use
the output of the 16th convolutional layer as the extracted
features, and calculate a mean squared error distance between
the features of the ground truth image and corresponding
denoised image. The perceptual loss Lp(θ) is defined in
Equation 2. ŷ(θ) is a denoised image and y is the corre-
sponding ground truth image. Feature maps φi are extracted
from block i of the pre-trained VGG19 network with size
hi × wi × di

LP (θ) =

4∑
i=1

1

hiwidi

∥∥φi(ŷ(θ))− φi(y)
∥∥2 . (2)

Perceptual loss can be effective for denoising because
it more accurately models the human visual system than
MSE. MSE only compares per pixel difference between two
images and does not take into account high level features.
Deep CNNs such as VGG-19 are better able to model the
human visual system because they learn features to accurately
describe the natural images they are trained on [13]. One
can take advantage of this artificial visual understanding by
penalizing a network when extracted features are dissimilar.
Based on this justification, many works have used perceptual
loss for low dose CT denoising.

In this work, we found that perceptual loss can have a
negative impact on low dose CT denoising as it can lead
to patterned artifacts. Further, using deep networks such as
VGG19 as a feature extractor introduces significant mem-
ory requirements and additional computation time during
training. Therefore, we propose the utilization of GANs for
producing images with high perceptual quality in the first
level, and fine tune these images in the second level to the
final denoised images.
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III. METHODS

A. Denoising Model

We can represent an image denoiser G mathematically as
a function that maps LDCT to NDCT ,where z ∈ RN×N is
a LDCT image and x ∈ RN×N is a NDCT image.

G : z → x (3)

Although noise in raw x-ray measurements can be mod-
elled as a combination of Poisson quantum noise and Gaus-
sian electronic noise, reconstructed CT images do not have a
well-defined noise distribution and the noise is non-uniformly
distributed across the image. Deep neural networks are
advantageous here as they can efficiently learn high-level
features and accurate data representations given a sufficiently
large training set.

B. Dataset Preparation

We train and evaluate our methods on the AAPM Low
Dose CT Grand Challenge dataset. We extracted 281,660
patches of size 64x64 from 8 patients for training, and
used the remaining 844 full sized (512 x 512) images from
the remaining two patients for testing. Due to the fully
convolutional nature of the proposed networks we are able to
train on patches and test on full sized images. Patches help
to reduce memory requirements and increase the number of
training samples.

C. Objective Functions

For MSE we minimize the loss function L with respect
to model parameters θ where

{
(xi, yi)

}N
i=1

are NDCT and
LDCT image pairs respectively.

LMSE(θ) =
1

N

N∑
i=1

∥∥f (xi; θ)− yi
∥∥2
F

(4)

The DRL network is trained using Equation 4 and the
LSGAN network is trained using Equation 1.

D. Cascade Architecture

Figure 2 gives a breakdown of the proposed architecture.
In the first level of the cascade, the LSGAN network inputs
are LDCT and the labels are NDCT images where X is
the LDCT image and Y is the NDCT image. In the second
level of the cascade, the DRL network (Figure 1) inputs are
predictions from the first level Y

(1)
P and the labels are the

difference image between first level predictions and NDCT
images Y

(2)
P = Y

(1)
P −Y.

During testing, LDCT images are given as input to the
LSGAN which gives preliminary denoised images as output.
These images are then input to the DRL network which
outputs predicted difference images Y

(2)
P . To arrive at the

final output, we subtract Y
(1)
P from Y

(2)
P to arrive at the

final prediction Yfinal.

IV. EXPERIMENTS AND RESULTS

For classification and segmentation there exists accurate
quantitative scores used to compare methods on the same
data. For denoising however, the most commonly used quan-
titative metrics are PSNR and SSIM. These metrics while
powerful, have been shown to be insufficient. Minimizing
MSE will maximize PSNR mathematically, but research has
shown that simply maximizing MSE can over-smooth images
[6], [5]. Evaluating LDCT denoising methods cannot rely
solely on current quantitative metrics, and researchers have
turned to qualitative studies with radiologists to score the
perceptual quality of images. Groups that do not have access
to radiologists for evaluation must perform some qualitative
analysis on their own.

The LDCT Grand Challenge Dataset contains annotations
for CT slices containing lesions. These slices are impor-
tant because in practice radiologists are looking for lesions
during CT examinations. In contrast to other works which
select the most desirable testing examples for performing
qualitative analysis, we avoid cherry-picking and perform
qualitative analysis on testing samples which have been pre-
annotated with lesions. This method of results evaluation is
less biased and gives a more honest representation of model
performance.

TABLE I
MEAN PSNR AND SSIM FOR TEST SET. THE BEST AND THE SECOND

BEST ARE DENOTED IN RED AND BLUE, RESPECTIVELY.

Method PSNR SSIM

Low Dose 25.4247 0.8211
BM3D 26.8496 0.7122
FC-AIDE [14] 29.1620 0.8804
DRLP [5] 28.8069 0.8436
CCNN-PL [4] 29.7232 0.8799
Proposed 29.2404 0.8816

V. DISCUSSION AND CONCLUSION

Table I shows the mean PSNR and SSIM scores for
our proposed method compared to other popular denoising
models. Our method achieves the best SSIM score and the
second best PSNR score. As previously mentioned, mini-
mizing MSE will lead to maximized PSNR however images
may be over-smoothed and lose fine structural and textural
details. Achieving both high PSNR and SSIM scores however
indicates a well performing model which has removed the
noise and maintained structural details. Our proposed method
demonstrates this quality quantitatively and this finding is
further supported by our qualitative analysis.

Figure 3 demonstrates the proposed cascaded structures
ability to fine tune results and achieve better performance
than each of the cascade layers independently. To re-iterate,
LSGAN is the output from the first cascade level and DRL
is the second cascade level. The proposed image shows the
using those two levels in series and demonstrates that there
is visible improvements by cascading the two.
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Fig. 3. Proposed Method Denoising Results

Fig. 4. Comparing texture and perceptual quality of GAN and perceptual
loss

Figure 4 highlights the shortcomings of perceptual loss
at modeling accurate structural and textural details during
denoising. It is evident from the DRLP results (DRL method
trained with perceptual loss) that perceptual loss is intro-
ducing a patterned artifact into the denoising result. The
network has demonstrated some ability and understanding of
the background texture however it has not accurately recon-
structed this texture. This background texture inherent to CT
images results from spatially variant noises. By definition,
a patterned artifact will not accurately model these spatially
variant noises effectively. Comparing the DRLP prediction
with the LSGAN prediction demonstrates that the LSGAN is
able to more effectively model the spatially variant noises as
the texture is not patterned. This finding suggests that GANs
may be a more effective tool when trying to maintain per-
ceptual quality of CT images during denoising compared to
perceptual loss. Further, calculating perceptual loss increases
training time and memory requirements significantly.

In this paper we proposed a cascade of deep neural
networks in order to denoise LDCT images. The first network
was LSGAN, and the second network was DRL. Input images
were initially denoised by LSGAN and subsequently fine
tuned by the DRL network. The DRL network predicted the
difference image, which was subtracted from the LSGAN

predictions to produce the final denoised output. Our pro-
posed method achieved high PSNR and perceptual quality
without introducing a perceptual loss. It was explained that
perceptual loss greatly enhances the ability of the model
to preserve structural details during denoising. However,
perceptual loss introduces a significant increase in memory
requirements and training time. Our poposed method was
able to maintain perceptual quality of the images by using
LSGAN at the first cascade level instead of relying on a
perceptual loss. We introduced residue image based denoising
in the second level to fine tune our results and improve the
PSNR and SSIM scores.

In conclusion, we have proposed an architecture which
outperforms the related works while being less computation-
ally expensive in testing and training. We have proven that
our cascaded architecture is able to produce denoised images
with better perceptual quality and relatively high PSNR and
SSIM scores when compared to other MSE based methods.
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