
  

 

Abstract—Parallel magnetic resonance imaging (pMRI) 

accelerates data acquisition by undersampling k-space through 

an array of receiver coils. Finding accurate relationships 

between acquired and missing k-space data determines the 

interpolation performance and reconstruction quality. 

Autocalibration signals (ACS) are generally used to learn the 

interpolation coefficients for reconstructing the missing k-space 

data. Based on the estimation-approximation error analysis in 

machine learning, increasing training data size can reduce 

estimation error and therefore enhance generalization ability of 

the interpolator, but scanning time will be longer if more ACS 

data are acquired. We propose to augment training data using 

unacquired and acquired data outside of ACS region through 

semi-supervised learning idea and autoregressive model. Local 

neighbor unacquired k-space data can be used for training tasks 

and reducing the generalization error. Experimental results 

show that the proposed method outperforms the conventional 

methods by suppressing noise and aliasing artifacts. 

I. INTRODUCTION 

Magnetic resonance imaging (MRI) has revolutionized 
radiology over past four decades. It has some advantages in 
compared to other imaging modalities such as non-radiation 
and superior soft tissue contrast. However, MRI suffers the 
low speed problem that causes high cost. In addition, patient 
has to stay in the closed-bore of MRI scanner for a long time 
and may feel uncomfortable with tight spaces. For this reason, 
many techniques have been proposed to accelerate MR 
imaging speed. Among those techniques, parallel MRI (pMRI) 
[1-3] speeds up data acquisition by undersampling data along 
the phase-encoding direction on k-space through an array of 
receiver coils. Aliasing artifacts caused by the undersampling 
acquisition below the Nyquist sampling rate are removed by 
separating aliased pixels in image domain or interpolate 
missing k-space data using neighboring k-space points [4].  

Parallel MRI reconstruction techniques can be classified as 
image-based [2], k-space-based [1, 3], and combinations of 
previous two kinds of methods [5]. Estimation of coil 
sensitivities is needed to perform image-based reconstruction, 
which can be acquired from a separate calibration scan or fully 
sampled data at the center of k-space. On the other hand, k-
space-based methods, formulated as an interpolation 
procedure, directly reconstruct missing k-space signals 
without requiring prior knowledge of coil sensitivities. Finding 
accurate relationships between acquired and missing k-space 
data determines the interpolation performance and 
reconstruction quality. For example, generalized auto-
calibrating partially parallel acquisitions (GRAPPA) [3], 
widely used in routine clinical practice, has been improved by 
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enhancing interpolation accuracy from multiple approaches 
like enlarging interpolation kernel size [6], cross-validated 
kernel selection [7], iterative reconstruction [8], image support 
reduction [9], virtual coil concept [10], infinite pulse response 
[11], discrepancy-based adaptive regularization [12], 
nonlinear interpolation [13], coefficient penalized 
regularization [14], sparsity-promoting calibration [15], and 
properly selected coefficients [16]. 

Autocalibration signals (ACS) data are used to learn the 
interpolation coefficients for reconstructing the missing k-
space data in GRAPPA. However, the acquired k-space lines 
outside of the ACS region and unacquired data are not used in 
calibration process, so that the learned regression model may 
be not accurate due to the limited training data, provided by 
the limited number of the acquired ACS lines. In machine 
learning theory, increasing the training data is helpful to 
enhance the generalization capability [17], which enables the 
k-space interpolation more accurate. However, the increased 
ACS lines as the training data cause the longer scan time and 
therefore delay imaging speed. To increase training data and 
improve reconstruction quality, transfer learning [20] has been 
used for MRI reconstruction in recent years [18, 19]. However, 
in medical imaging, particularly in MRI, training data and 
testing data may have different distributions in source and 
target domains under transfer learning framework. Moreover, 
MR coil architectures and images acquired from different MR 
scanner vendors may have different characteristics and 
features making transfer learning inefficient [18]. In addition, 
deep learning yields unstable reconstruction with several 
insatiability forms with respect to 1) certain tiny perturbations, 
2) small structural changes, and 3) changes in the number of 
samples [24]. Scan-specific reconstruction was proposed to 
improve k-space interpolation accuracy with database-free 
deep learning [21]. Since training ACS data is limited in scan-
specific manner, the 3-layers convolutional neural networks 
were trained for avoiding too many features and reducing the 
over complexity. The optimal model capacity should be 
selected with the suitable size of the training data for achieving 
the lowest possible generalization error [26].  

Besides the ACS lines as training data, the unacquired and 
acquired k-space data outside of ACS region may be also 
helpful for training regression model and fitting interpolation 
coefficients in GRAPPA. Motivated by the semi-supervised 
learning (SSL) [22], both ACS data (similar to labeled data in 
SSL) and the unacquired and acquired data (similar to 
unlabeled data in SSL) outside of ACS region could enhance 
the training performance and improve generalization 
capability, rather than only ACS data used for training. On the 
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other hand, since linear-predictive relationships rely on local 
Fourier information [23], smoothness assumption of SSL on 
Fourier domain may be applicable and local unacquired k-
space data could be used for training tasks. Based on this 
analysis, we propose a nonlinear interpolation method for 
improving GRAPPA reconstruction using SSL and 
autoregressive (AR) model. In this paper, motivation and 
background introduction are presented in the sections I and II. 
The section III provides the proposed method. Experimental 
results and conclusion are given in the sections IV and V.  

II. RELATED BACKGROUND 

A. GRAPPA Reconstruction 

GRAPPA reconstruction [3] is generalized as an 
interpolation process to estimate missing k-space data as the 
following equation: 

𝑆𝑗(𝑘𝑦 + 𝑟 ∙ ∆𝑘𝑦 , 𝑘𝑥) = ∑ ∑ ∑ 𝑤𝑗,𝑟(𝑙, 𝑏, ℎ) ×
𝐻𝑟
ℎ=−𝐻𝑙

𝑁𝑎
𝑏=−𝑁𝑏

𝐿
𝑙=1

𝑆𝑙(𝑘𝑦 + 𝑏 ∙ 𝑅 ∙ ∆𝑘𝑦 , 𝑘𝑥 + ℎ ∙ ∆𝑘𝑥)                                         (1) 

, where S represents k-space signals, w denotes the weight 
coefficients estimated by using ACS data, R is acceleration 
factor, j is the target coil interpolated by all other coils counted 
by l, and b and h construct the interpolation kernel. The indices 
kx and ky represent data positions along frequency encoding 
and phase encoding directions, respectively. The interpolation 
coefficients are calculated at first by using ACS data acquired 
in k-space. Then, those estimated coefficients are used to 
interpolate missing k-space data. It can be considered as a 
linear regression model with complex values of k-space data 
for solving the linear inverse problem. This calibration and 
interpolation process can be simplified as a matrix equation: 

𝑏 = 𝐴𝑥                                       (2) 

, where 𝐴  represents the matrix comprised of the 
undersampled points, 𝑏  denotes the vector for the missing 
points, and 𝑥 represents the coefficients to be estimated.  

B. Autoregressive Model in MRI Reconstruction 

The autoregression moving average (ARMA) model has 
been used to improve GRAPPA reconstruction [11]. The 
correlation of k-space data points is better characterized with 
the infinite impulse response model for improving 
interpolation accuracy and therefore reconstruction quality. 
Based on the linear predictability, missing k-space data may 
be accurately imputed by as a linear combination of measured 
samples [23]. Within a finite spatial support, Fourier samples 
can be interpolated by a linear combination of past and future 
samples with autoregressive structures. It is possible to reuse 
unacquired Fourier samples for estimating interpolation 
coefficients during the training phase. 

III. PROPOSED METHOD 

During calibration of GRAPPA reconstruction, 
generalization error can be decomposed into the estimation 
error and the approximation error. The error decomposition is 
demonstrated in Figure 1. The estimation error is caused by 
some factors such as noise and limited kernel size, and the 
approximation error is generated since ACS data and testing 
data on outer k-space have different distributions with 
different mean values and variances. 

 

Figure 1.  Estimation-approximation error decomposition with two terms at 
odds with each other. 

The learning bias ℱ  is limited with smaller estimation 
error, and the approximation error becomes larger. The larger 
sample size 𝑛  enables smaller estimation errors and has no 
effect on approximation error, but it requires more acquired k-
space data with longer scanning time. Therefore, there is a 
tradeoff between sizes of ℱ  and 𝑛 . The total generalization 
error is represented as 

𝐿(𝑓𝑛) − 𝐿(𝑓∗) = [𝐿(𝑓𝑛) − inf
𝑓∈ℱ

𝐿(𝑓)] + [ inf
𝑓∈ℱ

𝐿(𝑓) −  𝐿(𝑓∗)]     (3) 

, and  

𝑓∗ = argmin
𝑓

𝐿(𝑓)                                    (4) 

, where the first term of the right side of the Eq. (3) is the 
estimation error, and the second term is approximation error, 
𝐿  denotes the loss function, 𝐿(𝑓∗)  represents the lowest 

expected loss. If the sample size 𝑛 is infinite, 𝐿(𝑓𝑛) = 𝐿(𝑓∗). 

A.  Semi-Supervised Learning 

If the sample size of ACS 𝑛 is increased, the estimation 
error can be reduced. However, increasing sampled ACS data 
will delay scanning time. It may be possible to using 
unacquired k-space data for estimating interpolation 
coefficients. The ACS data acquired at the central k-space is 
considered as labeled data, which is limited in compared to 
unlabeled data such as unacquired and unsampled data in outer 
ACS region. The unacquired k-space data near the ACS region 
could have similar mean values and variance of magnitude on 
Fourier domain, in accordance with linear predictive 
relationships relying on local Fourier information [23]. 
Unacquired k-space data near the ACS lines may be belonged 
to the same clusters with ACS data and they distribute on the 
same manifold. Neighbor unacquired data near ACS lines may 
meet both clustering assumption and manifold assumption of 
semi-supervised learning [22]. Through an iterative process, 
the estimated k-space data near ACS lines predicted from the 
previous iteration are also used for calculating and updating 
interpolation coefficients, so that sample size 𝑛 is gradually 
increased. 

B. Recursive Estimation of Interpolation Coefficients in 

Autoregressive Mode 

To increase data for estimating interpolation coefficients, 

local neighbor unacquired k-space data are also iteratively 

used to augment training data, as shown in Figure 2. The 

initially estimated k-space data are generated using the 

conventional GRAPPA reconstruction. In the first iteration, 

two neighbor unacquired lines are added to the previous ACS 
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regions for estimating interpolation coefficients, and then 

interpolated unacquired k-space data replace the predicted 

data in the previous iteration. The interpolation kernel is 

different from the conventional GRAPPA, and it covers the 

locations of missing k-space lines, and the interpolation is 

similar to the equation (6) in the reference [11]. Furthermore, 

nonlinear terms along both of phase-encoding and frequency-

encoding directions are also added to enhance SNR, as 

nonlinear GRAPPA [13] does. 

 
Figure 2.  Autoregressive interpolation along phase encoding direction in k-
space. Unacquired k-space lines are re-generated by existing reconstructed 
data following the order from inner k-space to outer k-space. The upward-and-
downward phase-encoding directions are autoregressively interpolated. Only 
one direction (upward) along is demonstrated here. 

IV. EXPERIMENTAL RESULTS 

A. Datasets 

Two datasets are used to evaluate the proposed method. 
The first dataset is an 8-coil phantom data and the second one 
is a 4-coil axial brain data. For phantom dataset, an outer 
reduction factor 6 and 28 ACS lines are used to undersample 
k-space. A convolutional kernel size 2 x 33 is used for 
interpolating the conventional GRAPPA to produce the 
initially estimated k-space. For brain dataset, the outer 
reduction factor is 4 with 22 ACS lines. The kernel size is 2 x 
15 for producing initial k-space estimation. Then, the neighbor 
2 unacquired lines along phase-encoding direction and 11 
neighbors along frequency-encoding data points are used for 
iteratively interpolating k-space with augmented training data. 
The experimental procedures involving human subjects 
described in this paper were approved by the Institutional 
Review Board. 

B. Reconstruction Quality Evaluation 

Reconstruction results of the phantom dataset are shown in 
Figure 3. The conventional GRAPPA [3] and ARMA-model 
[11] based GRAPPA reconstructions show serious noise and 
aliasing artifacts at high reduction factor 6. Nonlinear 
GRAPPA [13] show artifacts due to low number of ACS lines 
used in reconstruction. The proposed method is able to reduce 
noise at the 1st iteration and the 10th iteration reconstructions. 
The latter one can also reduce tiny aliasing artifact in 
compared to the 1st iteration reconstruction. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 3.  Phantom reconstruction with the fully-sampled reference image (a), 
the traditional GRAPPA (b), the ARMA model-based reconstruction (c), 
nonlinear GRAPPA (d), and the proposed reconstruction with the 1st iteration 
(e) and the 10th iterations (f). 

Similar to the reconstruction results of phantom. The 
proposed method outperforms the conventional GRAPPA and 
ARMA-model based GRAPPA with suppressing noise and 
aliasing artifacts of brain image reconstruction, as shown in 
Figure 4. The 1st iteration of the proposed method shows some 
aliasing artifacts, and they gradually disappear in the 10th and 
the 30th iterations. The augmented training data by gradually 
enlarging neighbor unacquired lines may improve the 
interpolation accuracy in low-frequency area of Fourier 
domain. 

(a) (b) 
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(c) (d) 

(e) (f) 

Figure 4.  Fully-sampled k-space data is reconstructed as the reference image 
(a). Brain MRI reconstructions with the traditional GRAPPA (b), and ARMA 
model (c). The proposed reconstructions with the 1st, 10th, and 30th iterations 
are presented in (d), (e), and (f), respectively. Nonlinear GRAPPA 
reconstruction shows serious aliasing artifacts using the low number of ACS 
lines, which is not shown here. 

V. CONCLUSION 

In conclusion, an iterative reconstruction method is 

proposed to improve nonlinear interpolation accuracy of k-

space data for enhancing reconstruction quality. Semi-

supervised learning idea is applied to local neighbor k-space 

data with cluster assumption and manifold assumption, and 

training data are augmented through autoregressively adding 

local unacquired data near ACS region to interpolation 

coefficient learner. Experimental results show that the 

proposed method is able to suppress noise and aliasing 

artifacts in compared to the conventional methods. Due to 

learning-based MRI reconstruction suffers instabilities with 

perturbations [24, 25], stabilizing semi-supervised learning-

based reconstruction quality will be studied in the future 

work. 
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