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Abstract— Instrument segmentation is a crucial and chal-
lenging task for robot-assisted surgery operations. Recent
commonly-used models extract feature maps in multiple scales
and combine them via simple but inferior feature fusion
strategies. In this paper, we propose a hierarchical attentional
feature fusion scheme, which is efficient and compatible with
encoder-decoder architectures. Specifically, to better combine
feature maps between adjacent scales, we introduce dense
pixel-wise relative attentions learned from the segmentation
model; to resolve specific failure modes in predicted masks, we
integrate the above attentional feature fusion strategy based
on position-channel-aware parallel attention into the decoder.
Extensive experimental results evaluated on three datasets from
MICCAI 2017 EndoVis Challenge demonstrate that our model
outperforms other state-of-the-art counterparts by a large
margin.

Index Terms— Hierarchical Attention UNet, Attentional fea-
ture fusion, Position-channel-aware parallel attention, Instru-
ment segmentation

I. INTRODUCTION

Recently, robot-assisted minimally invasive surgery has
gradually become an active research area because of its
potentials to improve the stability and safety of surgical
operations [1], [2]. Instrument segmentation is a fundamental
task for further interactions between the robot and the envi-
ronment. However, accurate instrument segmentation from a
static image remains challenging if context information can
not be fully captured and understood, especially when the
environment becomes complicated by unpredictable factors
such as motion blurs of instruments, occlusions by blood, or
auxiliary tools, and different lighting conditions [3].

Traditional instrument segmentation models usually cap-
ture global structures and local details by combining low-
level and high-level feature maps with brute-force element-
wise computations, which ignores their implicit relation-
ships [4]. Even though attention becomes a popular com-
ponent to discover relations among different feature maps, it
is limited when applied on the same scale. To alleviate this
issue, it can be used to fuse feature maps in different layers,
and recent works mainly focus on the design combined with
global channel attention modules [5], [6]. However, all the
spatial information is compressed into one scalar, so such a
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Fig. 1. Comparisons of attentional feature fusion strategies for binary
segmentation: inputs, class activation maps generated by AFF-MSCAN,
RAFF-MSCAN, RAFF-CBAM, and RAFF-PPA (ours), and ground-truth
masks are displayed from top to bottom, respectively. It can be seen that
more reasonable attentions are paid on instruments with our method.

module may not be suitable for describing regions of subtle
but unique attributes of instruments in our task.

Motivated by the attentional feature fusion [7], in this
paper, we propose a hierarchical attentional feature fusion
scheme, which is naturally suitable for handling feature
maps across different scales in an encoder-decoder network.
Specifically, position-channel-aware parallel attention is de-
signed to solve the large gap between spatial attention and
channel attention for feature maps from adjacent scales, and
the hierarchical attentional feature fusion is responsible for
gradually fuse maps and recover details through soft selec-
tion. As a simple model with highly-compatible modules, our
Hierarchical Attention UNet, consistently outperforms other
state-of-the-art networks in all the sub-tasks from MICCAI
2017 EndoVis Challenge, without bells and whistles.
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Fig. 2. Architecture of our instrument segmentation model: based on the vallina TernausNet [8], RAFF-PPAs are incorporated to fuse decoded features
in adjacent scales hierarchically.

II. RELATED WORKS

A. Channel Attention Variants

Attention improves the representation power of convolu-
tional feature maps, but more global information is preferred
using the channel attention module, which mainly results
from global average pooling. To alleviate this issue, channel
attention can be applied with the position-sensitive spatial
attention sequentially [6] or in parallel [5]. To make the
channel attention module more sensitive to local informa-
tion, global average pooling operations can be replaced
with convolution-based residual attention [9] or non-local
operations [10] in context modeling.

Self-attention is another typical module in which weight
scores are computed by using weighted sum with local
features, but it ignores relationships among these features.
Therefore, such attentions can be learned in an interaction-
aware self-attention module inspired by PCA [11], and self-
attention can also be extended to multiple heads to cap-
ture different global information when spatial locations are
encoded using relational position encodings [12]. Besides,
temporal prior based on motion flow is integrated to segment
instruments in video [13]; more generally, identical mapping
is generalized to an attention module in the residual branch
for image classification [14], and attentional feature fusion is
capable of handling contexts for objects in various sizes [7].

B. Multi-scale Feature Selection

Feature maps in multiple independent scales may not be
easily fused without attention across scales. Initially, feature
maps in higher levels are combined with lower ones in
UNet [15], and transposed convolution operations can be
replaced with nearest upsampling ones in the decoder part
of UNet [16]; features from all the intermediate layers in
a fully convolutional network facilitates segmenting robotic
surgical instruments [4]. However, directly pooling in feature
pyramids loses pixel localizations, so object context pooling
is applied to update feature maps in every scale [17], and

global context prior attention is used for selecting low-level
features [18]. To obtain all the attention maps hierarchically,
relative masks are learned between adjacent scales [19].

In this paper, we not only incorporate multiscale attention
modules in a UNet but also hierarchically fuse feature maps
between adjacent scales.

III. METHODS

A. Hierarchical Attention UNet

As a typical network architecture for semantic segmen-
tation, UNet is constructed in our task, and it consists of
an encoder and a decoder. Specifically, in the encoder, a
16-layer VGGNet is applied to extract convolutional feature
maps [20], and there are five convolution blocks, each
of which have repeated convolutional feature maps from
VGGNet followed by an activation function such as ReLU.
There are five deconvolution blocks in the decoder to recover
feature maps from coarse levels to fine ones, each of which
contains an upsampling operator followed by transposed
convolution and an activation function like ReLU.

Residual attention feature fusion modules are hierarchi-
cally integrated into the decoder of an original UNet, and
its architecture is illustrated in Figure 2. To demonstrate
the effectiveness of the above-mentioned fusion module, no
additional carefully-designed modules are added. Therefore,
given an input image I , features FE ∈ RC×H×W from
VGGNet in an intermediate layer and the corresponding
features FD ∈ RC×H

2 ×W
2 in the encoder can be respectively

viewed as the local and global context.

B. Residual Attention Feature Fusion

To better fuse high-level feature maps in the decoder
and low-level ones in the encoder, a specialized scheme,
”Attention Feature Fusion” (AFF), is integrated to replace
simple pixel-wise concatenation or summation in the vallina
UNet. The mixed feature map FM is computed using the
above module as follows:
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FS = FE + U(FD)

FM = PPA(FS)× FE + (1− PPA(FS))× FD + FE

(1)
where FS is the ouput of the element-wise summation after
the global context is enlarged using bilinear upsampling
U . PPA(·) denotes the output from a position-channel-
aware parallel attention module to balance local and global
contexts.

RAFF-PPA

PPA

FE FD

ATc

ATs

PPA

: Channel AttentionATc ATs :  Spatial  Attention

Fig. 3. Structure of hierarchical attention feature fusion: PPA outputs
weights of a position-channel-aware parallel attention module, so features
focused by both spatial attention and channel attention are emphasized.
RAFF-PPA fuses attentional features from the low and high levels.

C. Position-channel-aware Parallel Attention
To exploit both spatial attention and channel one in the

attentional feature fusion scheme, a position-channel-aware
parallel attention module is constructed, as shown in Fig-
ure 3.

The local context FE and the global one FD are fused in
our attention module:

PPA(FS) = ATS(FS)×ATC(FS) (2)

where ATS(·) and ATC(·) represent spatial attention and
channel attention, respectively, and they are defined as fol-
lows:

ATS(FS) = σ
(
C1×1

(
[PAVG(FS);PMAX(FS)]

)
ATC(FS) = σ

(
FFN

(
PAVG(FS)

)
+ FFN

(
PMAX(FS)

))
(3)

where C1×1(·) is a convolution module which kernel size
is 1× 1; FFN(·) denotes a three-layer feed forward neural
network: the dimension of hidden layer is one, and those of
input and output layers are the same. PAVG(·) and PMAX(·)
represent the average pooling and max pooling operations.

D. Loss Function
To supervise training procedures of instrument segmenta-

tion models, the applied total loss function Ltotal contains
a multi-category negative log likelihood loss Lnll and an
intersection over union one mIoU :

Lnll = −
1

nc

nc∑
c=1

ni∑
i=1

Gc,ilog(Pc,i)

Ltotal = Lnll − log(mIoU)

(4)

where the dataset for the current sub-task has nc classes in
total, and the predicted mask has ni pixels. mIoU is an
evaluation metric that will be introduced in Section IV-C.

IV. EXPERIMENTS

A. Dataset

To evaluate the performances of our model, we choose
the original dataset about robotic instrument segmentation
in MICCAI 2017 EndoVis Challenge [1]. Specifically, the
width of a sampled image is 1920 pixels (320 pixels on both
the left and right borders of the image), and its height is 1080
pixels (28 pixels respectively on the top and bottom borders).
Therefore, the resolution of an input image becomes 1280×
1024 after the above-mentioned black borders are cropped
out.

This dataset contains a training set (1800 images) and
a test set (1200 images), which has already been held
out by the challenge organizers, and it has seven different
kinds of instruments including six operation instruments
and one robot-assisted counterpart. Based on this dataset,
the segmentation tasks can be divided into three sub-tasks:
binary segmentation (instrument or background), instrument
segmentation (seven types of instruments), and part segmen-
tation (shaft, clasper, and wrist).

B. Implementation Details

All the experiments are taken under the deep learning
framework named Pytorch, and models are trained using four
TITAN XP GPU cards. Four-fold cross-validation is used
when the model training where the training set is split into
1350 images for training and 450 samples for validation.

During training, Adam [21] is selected as our optimizer,
and its base learning rate is set as 0.00003. To accelerate the
forward propagation speed, the model input is resized to 1

4
the resolution of the image without black borders, and the
batch size is eight; then they are mainly augmented using
random operations including up-down and left-right flips.

During the inference, given the cropped and rescaled
images, the segmentation model directly outputs the semantic
mask with the same resolution, then these masks are resized
to 1280× 1024 for evaluation on three sub-tasks.

C. Metrics

Similar to metrics introduced in previous works, mIoU
(mean Intersection of Union) and mDice (mean Dice Coeffi-
cient) are used for evaluation in this paper. Given a ground-
truth mask G and a predicted mask P for class c, its IoU
IoUc and Dice Dicec are calculated as follows:

IoUc =

∑ni

i=1

∑ni

j=1 Pc,iGc,j∑ni

i=1 Pc,i +
∑ni

i=1Gc,i −
∑ni

i=1

∑ni

j=1 Pc,iGc,j

(5)

Dicec =
2
∑ni

i=1

∑ni

j=1 Pc,iGc,j∑ni

i=1 Pc,i +
∑ni

i=1Gc,i

(6)

It is important to note that infinite small numbers to avoid
zero division is ignored for simplicity. Consequently, the
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(a) Binary Segmentation (b) Part Segmentation (c) Type Segmentation

Fig. 4. Results for binary, part, and type segmentations: given input images on the first row, segmentation results provided by AFF-MSCAN, RAFF-
MSCAN, RAFF-CBAM, RAFF-PPA (ours), and ground-truth masks are shown from top to bottom, respectively.

average values of IoUs mIoU and those of Dice Coefficents
mDice among all the categories are defined as follows:

mIoU =
1

nc

nc∑
c=1

IoUc

mDice =
1

nc

nc∑
c=1

Dicec

(7)

V. ABLATION STUDIES

Components in our instrument segmentation model are
investigated, as listed in Table I. To simplify the annotations
of different modules, Attentional Feature Fusion [7], Resid-
ual Path [22], Convolutional Block Attention Module [6],
Position-channel-aware Parallel Attention module are respec-
tively abbreviated as AFF, R, CBAM, and PPA. By default,
the attention block in AFF is MSCAN.

A. Effectiveness of Attentional Feature Fusion

Attentional feature fusions significantly improve binary
and part segmentation performances. Specifically, mIoUs
of TernausNet after adding AFF respectively increase from

83.60% to 89.73% for binary segmentation and from 65.05%
to 71.02% for part segmentation. However, it slightly drops
from 33.78% to 33.40% for type segmentation, while the
corresponding mDice increases by 0.08%.

B. Effectiveness of Residual Path

Residual paths slightly deteriorate the binary performance
but improve results of part and type segmentations. For
example, compared to TernausNet with AFF-MSCAN on
mIoUs, this model with RAFF-MSCAN merely drops from
89.73% to 89.65% for binary segmentation, while it slightly
increases by 0.4% for part segmentation and significantly
improves from 45.03% to 56.80% for type segmentation.

C. Effectiveness of Position-channel-aware Parallel Atten-
tion

Conditioned on the residual paths and attentional feature
fusions, models with position-channel-aware parallel atten-
tion modules consistently improve the performances on all
the three sub-tasks. For instance, TernausNet + RAFF-PPA
achieves the highest mIoUs including 90.25%, 73.61%, and
53.91% for binary, part, and type segmentation sub-tasks.
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TABLE I
RESULTS OF ABLATION STUDIES ON THREE SUB-TASKS (MEAN±STD).

Method Binary Segmentation Part Segmentation Instrument Segmentation
mIoU (%) mDice (%) mIoU (%) mDice (%) mIoU (%) mDice (%)

TernausNet [8] 83.60±15.83 90.01±12.50 65.05±17.22 75.97±16.21 33.78±19.16 44.95±22.89
TernausNet + AFF-MSCAN [7] 89.73±11.26 94.12±7.97 71.02±14.30 81.07±11.76 33.40±21.24 45.03±23.56
TernausNet + RAFF-MSCAN [7] 89.65±10.75 94.11±7.60 71.42±14.30 81.24±11.92 45.57±23.32 56.80±24.41
TernausNet + RAFF-CBAM [6] 89.79±11.35 94.14±8.11 71.94±13.93 81.73±11.85 45.39±25.11 56.28±26.34
TernausNet + RAFF-PPA 90.25±10.39 94.48±7.26 73.61±13.57 83.01±11.10 53.91±28.45 63.16±28.69

TABLE II
RESULTS OF STATE-OF-THE-ART METHODS ON THREE SUB-TASKS (MEAN±STD).

Method Binary Segmentation Part Segmentation Instrument Segmentation
mIoU (%) mDice (%) mIoU (%) mDice (%) mIoU (%) mDice (%)

UNet [15] 75.44±18.18 87.37±14.58 48.41±17.59 60.75±18.21 15.81±15.06 23.59±19.87
TernausNet [8] 83.60±15.83 90.01±12.50 65.05±17.22 75.97±16.21 33.78±19.16 44.95±22.89
UNetPlus [16] 83.75±15.36 90.19±11.77 65.75±16.74 76.25±15.54 34.19±15.06 45.32±19.86
MF-TAPNet [13] 87.56±16.42 93.37±12.93 67.92±16.50 77.05±16.17 36.62±22.78 48.01±25.64

Ours 90.25±10.39 94.48±7.26 73.61±13.57 83.01±11.10 53.91±28.45 63.16±28.69

Even though the standard deviation for type segmentation
is relatively larger, which means on some occasions, results
become better by a large margin.

VI. COMPARISON WITH STATE-OF-THE-ART METHODS

Over the baseline TernausNet, our method provides large
boosts on mIoUs including 6.65%, 8.56%, and 20.13% for
binary, part, and type segmentation, respectively. Experimen-
tal results in Table II also demonstrate the superiority of our
method compared to other state-of-the-art ones.

VII. CONCLUSION

In this paper, we propose a hierarchical attentional feature
fusion scheme that can better fuse feature maps for instru-
ment segmentation in robotic-assisted surgery. Specifically,
the residual attentional feature fusion module is highly com-
patible with a decoder that refines feature maps from coarse
level to fine, and the position-channel-aware parallel attention
that more efficiently exploits both spatial and channel atten-
tions can be treated as a common attention module for maps
between two different scales. Extensive results and ablation
studies show the effectiveness of the proposed attentional
feature fusion scheme and the superiority of our model.
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