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Abstract— Respiratory diseases are among the leading causes
of death worldwide. Preventive measures are essential to avoid
and increase the odds of a successful recovery. An important
screening tool is pulmonary auscultation, an inexpensive, nonin-
vasive and safe method to assess the mechanics and dynamics
of the lungs. On the other hand, it is a difficult task for a
human listener since some lung sound events have a spectrum
of frequencies outside of the human hearing ability. Thus,
computer assisted decision systems might play an important
role in the detection of abnormal sounds, such as crackle or
wheeze sounds. In this paper, we propose a novel system, which
is not only able to detect abnormal lung sound events, but it is
also able to classify them. Furthermore, our system was trained
and tested using the publicly available ICBHI 2017 challenge
dataset, and using the metrics proposed by the challenge, thus
making our framework and results easily comparable. Using
a Mel Spectrogram as an input feature for our convolutional
neural network, our system achieved results in line with the
current state of the art, an accuracy of 43%, and a sensitivity
of 51%.

I. INTRODUCTION

According to the World Health Organization (WHO) [1],
Chronic Respiratory Diseases (CRDs) are among the leading
causes of death in the world. More than 3 million people
die each year from Chronic Obstructive Pulmonary Diseases
(COPDs), which is approximately 6% of all deaths world-
wide. COPD is a non-curable progressive life-threatening
lung condition, that restricts lung airflow and predisposes to
exacerbations and serious illness, but treatment can relieve
symptoms and reduce the risk of death. COPD is not a single
disease, but a term used to describe chronic lung diseases
that restrict lung airflow. The main causes of COPD are
smoking and indoor and outdoor air pollution, other non-
avoidable causes such as age and heredity. The most effective
method to screen and provide a COPD diagnosis is through
a pulmonary auscultation. It is a non-invasive, fast, cheap
and easy procedure to assess the state of the patient’s lungs
[2]. However, the diagnosis process is highly dependent on
the physician’s experience and ear acuity. There are several
lung auscultation spots in the chest, sides and back, with
different sound characteristics corresponding to the different
lung areas. With the recent development and improvement of
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digital stethoscopes [3], we now have the ability to digitize
lung sound signal. This allows the usage of computer assisted
decision systems (CADs) based on lung sound auscultation.
Additionally, with the development of wireless services
and the Internet of Things (IoT), the benefits of a fully
automated diagnosis could be spread worldwide, making
them faster and more accessible to the patients, especially
when combined with cloud service technology [3]. On the
other hand, there are several issues on the analysis of lung
sounds, since these are immensely dependant on several
factors, such as auscultation stop, patient position, airflow
intensity, age, weight, gender, etc [4]. In this paper, we aim
to successfully detect and classify adventitious sounds in
lung sound signals, through signal processing techniques and
deep artificial neural networks, namely convolutional neural
network architectures (CNN).

A. Contribution

The contributions of this work are the following:
• The application of CNNs for the detection and classifi-

cation of crackles and wheezes.
• The usage of a novel set of lung sound features for the

detection of adventitious lung sounds.
This is paper is organized as follow. In Section II, we
present a brief description of the state-of-art algorithms on
lung sound detection and classification and we provide some
background on abnormal lung sounds. In Section III, the
signal processing pipeline is described and in Section IV
our neural network is explained in detail. In Section V, the
experimental setup is defined and results are presented and
discussed in Section VI. Finally, in Section VII, conclusions
are withdrawn.

II. STATE-OF-ART ALGORITHMS AND BACKGROUND

Since the International Conference on Biomedical and
Health Informatics (ICBHI) 2017, released a respiratory
sound database, there have been five studies [5], [6], [7], [8],
[9], that we are aware of that have used it. The most common
algorithms used to detect crackles and wheezes are artificial
neural networks (ANN), support vector machines [10], k-
nearest neighbors [11] and Gaussian mixture models [12].
The most common ANN are the standard multi-layer percep-
tron, with the exception of [6] and [5] which respectively use
a CNN and recurrent neural network architecture (RNN). In
both studies, the system aims to detect abnormal lung sounds.
Other approaches used Hidden Markov models to infer the
most likely state sequence of events in a lung sound signal.
The presence or not of crackles and wheezes in the signal
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Fig. 1. A crackle sound example.

is inferred [7] by analyzing the generated state sequences.
Finally, Kochetov et al. [5] proposed a novel Noise Masking
Recurrent Neural Network (NMRNN) to detect abnormal
respiratory sounds. They achieved the current state-of-art
results a Sensitivity (Se) of 0.56 and a Specificity (Sp) of
0.74 to the aforementioned task.

A. Physiology of Lung Sounds

Abnormal breath sounds are described by the absence
or reduced intensity of sounds. Adventitious sounds are
additional respiratory sounds superimposed on normal breath
sounds. They can be continuous (like wheezes) or discontinu-
ous (such as crackles), and some can be both (like squawks).

• Crackles are discontinuous adventitious sounds gener-
ated during inspiration (in general). A crackle can be
characterized as fine (short duration) or coarse (long du-
ration) [2]. Coarse crackles occur during the beginning
of an inhalation and are indicative of a chronic bronchial
disease. When in the middle of an inhalation, these are
indicative bronchiectasis, and when in the end of an
inhalation, these are indicative of a peripheral bronchi.
Fine crackles are indicative of a peripheral bronchi. It
is generally accepted that the duration of a crackle is
lower than 20 ms and the frequency range is between
100 and 200 Hz [2], see Figure 1.

• Wheeze is a continuous adventitious sound [2]. Acous-
tically, it is a periodic wave and lasts more than 100ms.
Wheezes are usually associated with an airway obstruc-
tion resulted from various causes. The frequency of
wheezes lies within 100 and 2500 Hz [2], see Figure
2.

It is important to notice that the detection of crackles and
wheezes lies within the range of 100 to 2500 Hz, therefore
any other sound outside this range, such as noise, can be
safely discarded or filtered without a significant loss of the
quality of the adventitious sounds.

III. SIGNAL PROCESSING PIPELINE

Since the dataset is composed by lung sounds at different
sampling rates, these are resampled to 6000 Hz, using the
method proposed by [13]. To remove signal noise artifacts,
we applied a 12th order Butterworth bandpass filter [14]
with cutoff frequencies of 100 Hz to 2500 Hz. The signal
is normalized using a Z-score function. Afterwards, Power
Spectrum Density (PSD), Mel Spectrum (MS), Discrete

Fig. 2. A wheeze sound example.

Fourier Transform (DFT) and Mel Frequency Ceptral Co-
efficients (MFCC) are extracted from the normalized lung
sound signal. The PSD and MS are converted to the decibel
scale (0 to -80), and further normalized using a min-max
normalization. The MFCCs are normalized using a z-score
function. Furthermore several sizes of Mel filter banks have
been tested, our best results were obtained 64 filters. The
window size chose to compute the DFT of the PSD, MS
and MFCC is 512 (128 ms).

IV. DEEP-LEARNING MODEL

In this paper, we implemented a CNN based algorithm
due to its innate ability to detect local patterns in a grid-like
data structure. A diagram of the proposed one-dimensional
network is presented in Figure 3. When lung sound signals
are straightforward used, the CNN is composed by 1D
convolutional layers. As for the other features (PSD, PS,
MFCC), the net is composed by 2D convolutional layers. The
CNN is made by 3 convolutional layers, 1 fully-connected
layer and a Global Max Pooling (GMP) layer between the
final convolutional layer and the fully connected layer in
order to transform the dynamic sized grid into a static size
feature vector.

In the last layer, the most likely class is inferred. To do so
a softmax activation function is used. We use Leaky ReLU
with an alpha of 0.001 as the activation function for the
convolutional layers. We used the unit norm constraint for
the weights of the individual kernels of the convolutional
layers and the fully-connected layer. For a CNN made by
2D convolutional layers, we use 64 kernels of size (3,3) and
stride of (1,1) on all layers. The receptive field on the first
layer is 256 ms and 3 Hz. In the second layer is 384 ms and
5 Hz. In last layer is 512 ms and 7 Hz.
For a CNN made by 1D convolutional layers, we use 16
kernels of size 3 and stride of 1 on all layers. The CNN made
by 2D convolutional layers has 74,756 trainable parameters,
on the other hand the CNN made by 1D convolutional layers
has 63,428 trainable parameters. Increasing the number of
convolutional layers, on both nets lead to overfitting behavior.
On the other hand, fewer layers damaged the model’s ability
to learn the signal patterns.

V. EXPERIMENTAL SETUP

A. Materials

The ICBHI 2017 respiratory sound database [15] was
part of a scientific challenge aimed to test and compare
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Fig. 3. A diagram of the proposed CNN model.

the robustness of state-of-the-art techniques on lung sound
analysis. The goal was to classify each individual respiratory
cycle into one of four classes: Normal, crackle, wheeze, both.

The dataset consists of a set of respiratory sound record-
ings and their corresponding annotation files. The audio
samples were collected independently by two research teams,
the respiratory research and rehabilitation laboratory of the
school of health sciences, University of Aveiro, Portugal
(Lab3R) and the Aristotle University of Thessaloniki, Greece
(AUTH). The dataset contains 920 annotated audio record-
ings collected from 126 participants. Each audio recording
was obtained using a multi-channel or single-channel acqui-
sition system on several auscultation spots. The auscultation
spots are: Anterior left (Al), Anterior right (Ar), Lateral left
(Ll), Lateral right (Lr), Posterior left (Pl), Posterior right (Pr)
and Trachea (Tc). Each recording was manually annotated
over several respiratory cycles. On each cycle, the starting,

ending timestamp and the presence of crackles or wheezes
was annotated by health professionals.

B. Metrics of Performance

In [15], a set of metrics was proposed: Sp, SE, Average
score (AS) and Harmonic score (HS). These metrics are
calculated as follows:

SE = (Cc+Ww+Bb)/(C+W +B) (1)

SP = Nn/N (2)

AS = (SE +SP)/2 (3)

HS =
(2×SE ×SP)
(SE +SP)

(4)

where N is the number of normal sounds, Nn is the number
of correctly classified normal sounds, C is the number of
crackle sounds, Cc is the number of correctly classified
crackle sounds, W is the number of wheeze sounds, Ww is
the number of correctly classified wheezes, B is the number
of sounds that contain both crackle and wheeze sounds and
Bb is the number of correctly classified sounds that contain
both adventitious sounds. The dataset was split into training
(60%) and testing (40%) sets, 2063 respiratory cycles from
79 participants were included in the training set, while 1579
respiration cycles from 49 patients were included in the
testing set. Recordings from the same patient are only used
for training or testing purposes, thus avoiding biasing in
our predictions. Due to the class imbalance, the training is
performed in the following way, for each epoch:

• Sample a random number of samples from each class.
• Shuffle samples.
• Train the model using mini-batches of size one.
The maximum number of samples of each class is equal to

the number of samples of the minority class. Under sampling
is applied to both train and test sets during the training step.
Lastly, five-fold cross validation [16] was used to measure
the robustness of proposed algorithms.

The weights of the CNN are learned using a stochastic
gradient descent optimization method [17]. The learning rate
is set to 0.01 over the first 180 epochs, 0.001 for the next
60 epochs and 0.001 for the last 60 epochs.

VI. RESULTS AND DISCUSSION

Training CNN models in the current dataset is indeed a
great challenge: the dataset is unbalanced, a high variability
on the respiratory cycles, unbalance records per auscultation
spot, different sampling rates, different equipment properties,
noise, artifacts, etc. Nevertheless, the average scores over the
five folds are presented in Table I.

The results in Table I show that MS features are the most
generic. They detect adventitious sounds more accurately
than any other feature, but also the worst SP. The weakness of
the straightforward usage of lung sounds is evident, whereas
it can easily distinguish normal from crackle sounds, it fails
to detect wheeze sounds. It is worthy to notice that, although
MFCC features are standard, they did not generalize as
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Net size Acc AS HS Sp SE ”Normal”
Recall

”crackle”
Recall

”wheeze”
Recall ”both” Recall

Lung Sounds 63,428 37% 0.37 0.36 0.41 0.33 0.41 0.45 0.22 0.09
PSD 74,756 40% 0.40 0.39 0.37 0.42 0.37 0.52 0.33 0.28
MS 74,756 43% 0.43 0.42 0.36 0.51 0.36 0.62 0.37 0.34

MFCC 74,756 43% 0.42 0.42 0.42 0.42 0.42 0.55 0.26 0.26

TABLE I
RESULTS FROM THE USAGE OF LUNG SOUNDS, PSD, MS AND MFCC FEATURES IN A CNN MODEL. THE BEST RESULTS FOR EACH METRIC ARE

HIGHLIGHTED IN BOLD.

well as it was expected. On the other hand, MS features
consistently had the smallest gap between the train/test loss
and train/test accuracy, followed by PSD, MFCC and the
lung sound signals. We hypothesize that MS is the most
advisable feature to the detection of crackles and wheeze
in lung sounds, because the transformation to the Mel space
might mimics the human ear and it creates a ”smoothing”
effect on the frequency component of the signal.

VII. CONCLUSIONS

In this paper, a set of features are feed into a CNN to
detect pulmonary diseases. We present different functions to
convert lung sound signals into a 2D image for classification
purposes. We also experimented the usage of a 1D CNN for
the processing and classification of the lung sound signal. We
found that MS when feed into CNN achieves results in line
with the current state-of-art [5]. For future work, we intend
test and design new deep learning architectures, based on
more sophisticated deep neural net configurations.
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[7] N. Jakovljević and T. Lončar-Turukalo, “Hidden markov model based
respiratory sound classification,” in Precision Medicine Powered by
pHealth and Connected Health, N. Maglaveras, I. Chouvarda, and
P. de Carvalho, Eds. Singapore: Springer Singapore, 2018, pp. 39–
43.

[8] A. Rao, S. Chu, N. Batlivala, S. Zetumer, and S. Roy, “Improved
detection of lung fluid with standardized acoustic stimulation of the
chest,” IEEE Journal of Translational Engineering in Health and
Medicine, vol. 6, pp. 1–7, 2018.

[9] G. Chambres, P. Hanna, and M. Desainte-Catherine, “Automatic detec-
tion of patient with respiratory diseases using lung sound analysis,” in
2018 International Conference on Content-Based Multimedia Indexing
(CBMI), Sep. 2018, pp. 1–6.

[10] M. M. Azmy, “Classification of lung sounds based on linear prediction
cepstral coefficients and support vector machine,” in 2015 IEEE
Jordan Conference on Applied Electrical Engineering and Computing
Technologies (AEECT), Nov 2015, pp. 1–5.

[11] J. H. L. Serato and R. Reyes, “Automated lung auscultation identi-
fication for mobile health systems using machine learning,” in 2018
IEEE International Conference on Applied System Invention (ICASI),
April 2018, pp. 287–290.

[12] J. Chien, H. Wu, F. Chong, and C. Li, “Wheeze detection using
cepstral analysis in gaussian mixture models,” in 2007 29th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society, Aug 2007, pp. 3168–3171.

[13] W. Putnam and J. Smith, “Design of fractional delay filters using con-
vex optimization,” in Proceedings of 1997 Workshop on Applications
of Signal Processing to Audio and Acoustics, 1997, pp. 4 pp.–.

[14] S. Butterworth, “On the theory of filter amplifiers. the wireless
engineer,” From 1923 to 1930, the journal was called Experimental
Wireless and the Radio Engineer, vol. 7, pp. 536–541, 1930. [Online].
Available: https://ci.nii.ac.jp/naid/10030057017/en/

[15] B. M. Rocha, D. Filos, L. Mendes, G. Serbes, S. Ulukaya, Y. P.
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