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Abstract— Subcutaneous insulin absorption is well-known to 

vary significantly both between and within subjects (BSV and 

WSV, respectively). This variability considerably obstacles the 

establishing of a reproducible and effective insulin therapy. 

Some models exist to describe the subcutaneous kinetics of both 

fast and long-acting insulin analogues; however, none of them 

account for the BSV. The aim of this study is to develop a 

nonlinear mixed effects model able to describe the BSV 

observed in the subcutaneous absorption of a long-acting 

insulin glargine 100 U/mL. Four stochastic models of the BSV 

were added to a previously validated model of subcutaneous 

absorption of insulin glargine 100 U/mL. These were assessed 

on a database of 47 subjects with type 1 diabetes. The best 

model was selected based on residual analysis, precision of the 

estimates and parsimony criteria. The selected model provided 

good fit of individual data, precise population parameter 

estimates and allowed quantifying the BSV of the insulin 

glargine 100 U/mL pharmacokinetics. Future model 

development will include the description of the WSV of long-

acting insulin absorption. 

 

Clinical Relevance— The proposed model will become an 

important component of in silico platforms for the development 

and testing of new basal insulin dosing strategies. 

I. INTRODUCTION 

 Long-acting insulin analogues are widely used to treat 
diabetes. They are commonly employed in multiple daily 
injection (MDI) therapy to cover the daily basal insulin need, 
especially in subjects with type 1 diabetes (T1D), but also in 
those with advanced stage of type 2 diabetes (T2D). 
However, despite the progress made in insulin preparation 
and titration, many patients are still experiencing dangerous 
fluctuations in their blood glucose levels, mainly due to the 
biological variability present in the absorption process. In 
fact, plasma insulin level after a subcutaneous (sc) 
administration is affected by several factors, such as 
concentration and volume of insulin bolus, injection site and 
depth, skin temperature and tissue blood flow [1]-[4]. These 
factors lead to a considerable between- and within-subject 
variability (BSV and WSV, respectively) that significantly 
hampers the achievement of the target glucose control. 

The BSV is usually assessed with a post-hoc analysis 
from the individual parameters estimated with standard 
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estimation methods [5]-[7]. However, this procedure does not 
account for the precision of individual estimates, thus 
possibly biasing the results [8]. A better approach to 
overcome this issue is the nonlinear mixed effects (NLME) 
modeling. In this framework, the parameters shaping the 
population variability (the so-called fixed effects) are directly 
assessed during the estimation process. Thereafter, the fixed 
effects are employed to support the estimation of individual 
parameters which are characterized by the deviation from the 
population value (random effects). In addition, the model 
predictive power can be improved by introducing some 
subjects’ covariates to explain part of the population 
variability in a deterministic way [9].  

Here, we aim to apply the NLME modeling technique to a 
previously validated compartmental model in order to 
describe the BSV present in the subcutaneous absorption of a 
long-acting insulin glargine 100 U/mL (Gla-100). Such 
model will become an important component of in silico 
platforms, like the UVa/Padova T1D simulator [6] and the 
Padova T2D simulator [10]. The incorporation of models that 
explicitly accounts for subject variability would allow 
running more realistic simulations, providing great benefits 
on the way to the approval of new insulin treatments. 

II.  MATERIALS AND METHODS 

A. Database 

To build the model we used data of two independent 
studies. For both studies, a validated radio immunoassay 
(lower limit of quantification, LLOQ, measured by the lab 
equal to 5.02 μU/mL) was used to measure Gla-100 
concentration. The measurements below the LLOQ were 
discarded. More detailed information about the databases is 
available in [7]. 

Study 1. Twenty-two T1D subjects (age = 42±10 years, 
body weight, BW = 78±10 kg, body height, BH = 176±7 cm) 
underwent a 36-h euglycemic clamp and received a single sc 
injection of 0.4 U/kg of insulin Gla-100, at around 9 am (𝑡 = 
0) [11]. During the clamp, glucose was infused to keep blood 
glucose stable at around 100 mg/dl and avoid hypoglycemia. 
The blood samples were collected at 𝑡 = 0, 1, 2, 4, 6, 8, 12, 
16, 20, 24, 28, 32 and 36 hours to measure glucose and 
insulin levels (Fig. 1, panel A).  

Study 2. Twenty-five T1D subjects (age = 42±9 years, 
BW = 82±12 kg, BH = 178±8 cm) received a sc injection of 
0.4 U/kg of insulin Gla-100, at around 8 pm (𝑡 = 0), for 8 
days, and after the 8-day period they underwent a 36-h 
euglycemic clamp [12]. During the clamp, glucose was 
infused to keep blood glucose stable at around 100 mg/dl and 
avoid hypoglycemia. The blood samples were collected after 
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dosing on day 8 at 𝑡 = 0, 1, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 
32 and 36 hours to measure glucose and insulin levels (Fig. 1, 
panel B).  

B. Nonlinear Mixed Effects Model 

The proposed model consists of a structural model of Gla-
100 sc absorption and kinetics combined with a stochastic 
model describing the BSV:  

𝒛𝑗(𝑡) = 𝒇𝑗(𝒙𝑗, 𝛙𝑗) + 𝒗𝑗(𝑡) (1) 

𝛙𝑗(𝑡) = 𝒅𝑗(𝒄𝑗 , 𝛉, 𝛈𝑗) (2) 

𝛈~𝒩(𝟎,𝛀) (3) 

where: 𝒛𝑗 is the measurement vector for the jth subject, 𝒙𝑗 is a 

vector incorporating variables such as time and injected dose, 
𝒇𝑗 is a vector function representing the structural model,  𝛙𝑗   
is the set of model parameters, 𝒗𝑗 is the intra-individual error 

vector, 𝒅𝑗 is a vector function describing the stochastic model 

of 𝛙𝑗 using the covariates vector 𝒄𝑗, the population 

parameters 𝛉 (fixed effects) and the inter-individual 
variability 𝛈𝑗 (random effects) assumed to be normally 

distributed with zero mean and covariance matrix 𝛀. 

Structural Model. The model of sc absorption of Gla-100 
was described by a linear two-compartment model recently 
proposed by Schiavon et al. [7]: 

   {

𝐼𝑞̇1(𝑡) = −𝑘𝑠𝑝 ∙ 𝐼𝑞1(𝑡) + 𝐹 ∙ 𝑘 ∙ 𝑢(𝑡)                                      

𝐼𝑞̇2(𝑡) = −𝑘𝑠𝑝 ∙ 𝐼𝑞2(𝑡) + 𝑘𝑠𝑝 ∙ 𝐼𝑞1(𝑡) + 𝐹 ∙ (1 − 𝑘) ∙ 𝑢(𝑡)

𝑅𝑎𝐼(𝑡) = 𝑘𝑎 ∙ 𝐼𝑞2(𝑡)                                                                   

  (4) 

where 𝐼𝑞1(𝑡) and 𝐼𝑞2(𝑡) represent insulin masses in the 

subcutis (precipitate and soluble state, respectively) and 𝑘 
[dimensionless] the precipitate fraction of insulin in the 
injected dose. From 𝐼𝑞1(𝑡), insulin dissolves with a constant 

rate 𝑘𝑠𝑝 [min−1]. From 𝐼𝑞2(𝑡), insulin is absorbed into 

plasma, with a rate constant 𝑘𝑎 [min−1], thus, generating the 
flux 𝑅𝑎𝐼(𝑡). The model assumes a subject-specific 
bioavailability factor, represented by the parameter 𝐹 
[dimensionless]. The model described by (4) was then 
coupled to a linear single-compartment model to describe the 

whole-body insulin kinetic [13][14]: 

{
𝐼𝑝̇(𝑡) = −𝑘𝑒 ∙ 𝐼𝑝(𝑡) + 𝑅𝑎𝐼(𝑡)                 

𝑦(𝑡) =
𝐼𝑝(𝑡)

𝑉𝐼
                                                  

 (5) 

where 𝑘𝑒 [min−1] represents the fractional insulin clearance 
and  𝑉𝐼 [L/kg] is the distribution volume.  

Error Model. The measurement error is assumed to be 
independent, Gaussian, with zero mean and variance: 

σ2(𝑡) = 𝑎2 + 𝑏2𝑦(𝑡)2 (6) 

as in [14], but with a and b unknown, estimated from the 
data. 

Stochastic Models of BSV. Four models of BSV were 
tested and compared. They all shared the assumption that 
parameters 𝑘𝑠𝑝, 𝑘𝑒 and α (= 𝑘𝑠𝑝 − 𝑘𝑎) follow a log-normal 

distribution:  

ψ𝑖,𝑗 = θ𝑖 ∙ exp(η𝑖,𝑗) (7) 

while 𝐹 and 𝑘 follow a logit-normal distribution: 

ψ𝑖,𝑗

1−ψ𝑖,𝑗
=

θ𝑖

1−θ𝑖
∙ exp(η𝑖,𝑗) (8) 

In addition to these assumptions, Models 2, 3, and 4 also 
assume that some correlation (ρ𝑚,𝑛) between the random 

effects of parameters m and n may take place. This is done by 
introducing the appropriate out-of-the-diagonal terms in 𝛀 
and estimating them from the data. Furthermore, some 
subjects’ covariates can be included in the stochastic model 
to explain the possible dependency of some parameter from 
macroscopic subjects’ characteristics. In this case, the model 
of the parameter variability becomes: 

ψ𝑖,𝑗 = θ𝑖 ∙ exp(β𝑖,𝑘 ∙ (𝑐𝑗,𝑘 − 𝑐𝑘̅) + η𝑖,𝑗) (9) 

where 𝑐𝑗,𝑘 is the kth covariate and 𝑐𝑘̅ its mean value. For 

each covariate added to the stochastic model, a coefficient 

β𝑖,𝑘, i.e., between model parameter i and subject’s covariate 

k, has to be estimated. Person correlation analysis among the 
estimated parameters was used to detect the most correlated 
covariate-parameter pairs and random effects. 

C. Parameter Estimation 

As reported in [7], the structural model is a priori non-
uniquely identifiable since the rate parameters 𝑘𝑠𝑝 and 𝑘𝑎 are 

interchangeable and only the ratio between 𝐹 and 𝑉𝐼 is 
identifiable. To overcome these issues, the parameter α =
𝑘𝑎 − 𝑘𝑠𝑝 described by a log-normal distribution so that α >
0 was introduced, and 𝑉𝐼 was fixed to 0.135 L/kg [15]. In 
addition, as done in [7], a priori information on 𝑘𝑒 was added 
to help a posteriori identifiability [15]. Therefore, the 
parameters that were estimated are: 5 fixed effects, (𝛉 =
[𝐹, 𝑘, α, 𝑘𝑠𝑝, 𝑘𝑒]), 5 standard deviations of the random effects 

(ω𝐹 , ω𝑘, ωα, ω𝑘𝑒 , ω𝑘𝑠𝑝), a number of coefficients β𝑖,𝑘 and 

ρ𝑚,𝑛 depending upon the selected model, and 2 parameters of 

the measurement error model (𝑎 and 𝑏). 

For model identification and validation, we used the 

software Monolix (Monolix 2020R1, © Lixoft [16]) that 

implements the Stochastic Approximation of Expectation 

Maximization (SAEM) in combination with a Markov chain 

 
Fig. 1. Plasma insulin concentration [µU/mL] in study 1 (panel A) and 

2 (panel B). Blue lines represent individual profiles, black lines the 

mean profile and dashed lines the LLOQ. 
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Monte Carlo (MCMC) method to estimate the maximum 

likelihood of the NLME model parameters [17]. The Fisher 

information matrix was estimated with the Metropolis-

Hasting's algorithm and the likelihood through an 

importance sampling method [16]. 

D. Model Validation and Comparison  

Model results were assessed in terms of residual 
distribution, physiological plausibility of parameters, 
precision of the estimates and parsimony criteria. In 
particular, the goodness of the individual fits was checked by 
visual inspection of the data vs. individual predictions while 
the distribution of individual weighted residuals (IWRES) 
and normalized prediction distribution errors (NPDE, [18]) 
were compared to a standard Gaussian distribution. The 
Shapiro-Wilk (SW) test and the Runs test were used to assess 
normality and randomness of residuals, respectively. This 
analysis was performed in R (R version 4.0.3, © The R 
Foundation [19]) assuming a significance level p = 0.05. The 
uncertainty of the estimates was obtained from the inverse of 
the Fisher information matrix and summarized by the average 
relative standard error (RSE) and the number of parameters 
with RSE>50%. Finally, among the models providing 
satisfactory scores in all the previous metrics, model selection 
was performed using the Bayesian information criterion 
corrected for NLME model (BICc) [20]. 

III. RESULTS 

A. Model Comparison 

Results of model comparison are reported in Table 1. All 

the tested models provided satisfactory weighted residuals, 

with all the subjects passing the Runs and at least the 94% 

passing the SW. Similar average RSEs were obtained with 

the four models, with the lowest value achieved by Model 1. 

However, the lowest BICc was obtained with Model 2, 

which was therefore selected as best one. The observations 

versus predictions plot, IWRES and NPDE distributions 

obtained with this model are reported in Fig. 2. 

B. The Selected Model 

The selected model (Model 2) accounts for a correlation 

between the random effects of the parameters k and 𝑘𝑠𝑝 

(ρ𝑘,𝑘𝑠𝑝 = 0.474) but does not include any covariates.  

Model equations and covariance matrix of the random 

effects are: 

 

{
  
 

  
 

𝐹

1−𝐹
=

𝐹𝑝𝑜𝑝

1−𝐹𝑝𝑜𝑝
∙ exp(η𝐹) 

𝑘

1−𝑘
=

𝑘𝑝𝑜𝑝

1−𝑘𝑝𝑜𝑝
∙ exp(η𝑘) 

α = α𝑝𝑜𝑝 ∙ exp(ηα)      

𝑘𝑠𝑝 = 𝑘𝑠𝑝
𝑝𝑜𝑝

∙ exp(η𝑘𝑠𝑝)

𝑘𝑒 = 𝑘𝑒
𝑝𝑜𝑝

∙ exp(η𝑘𝑒)   

 (10) 

 

𝛀 =

[
 
 
 
 
 
ω𝐹

2 0 0 0 0

0 ω𝑘
2 0 ρ𝑘,𝑘𝑠𝑝ω𝑘ω𝑘𝑠𝑝 0

0 0 ω𝛼
2 0 0

0 ρ𝑘,𝑘𝑠𝑝ω𝑘ω𝑘𝑠𝑝 0 ω𝑘𝑠𝑝
2 0

0 0 0 0 ω𝑘𝑒
2]
 
 
 
 
 

  (11) 

 The model parameter estimates are reported in Table 2 

together with their precisions (as RSE in brackets). Kinetic 

parameters are consistent with those estimated in [7], and 

error parameters with those assumed in [14]. 

IV. DISCUSSION 

In this work, we proposed a NLME model of the sc 

absorption of insulin glargine 100 U/mL. It couples the 

structural model developed in [7] with a novel model of the 

BSV. The NLME model was able to capture both the typical 

trend and the variability of the absorption process, as well 

as, to provide an estimate of the deviation of each subject 

from the typical behavior through the random effects. 

A significant (p < 0.05) positive correlation between η𝑘 

and η𝑘𝑠𝑝 was detected, indicating that the higher the 

precipitate fraction of insulin after the injection (higher k), 

the higher the probability for an insulin molecule to dissolve 

TABLE I. MODEL COMPARISON 

Model 

number 
Correlations Covariates 

Number of 

parameters 

Precision Residuals 
BICc 

Mean RSE RSE>50% SW test Runs test 

1 — — 12 13.8 0 96 100 2531 

2 ρ𝑘,𝑘𝑠𝑝 — 13 19.4 0 94 100 2528 

3 ρ𝑘,𝑘𝑠𝑝 β𝑘𝑒,log(𝐵𝑀𝐼) 14 22.0 1 94 100 2531 

4 ρ𝑘,𝑘𝑠𝑝 β𝐹,log(𝐴𝐺𝐸) 14 21.8 2 94 100 2532 

Summary of the results obtained with the tested BSV models, ordered by increasing complexity. From left: model number; correlations 𝜌 between random 
effects; coefficients β allowing introducing a covariate in the model; number of unknown parameters; the precision of estimated parameters expressed as 
mean RSE and number of RSE > 50%; percentages of the subjects that passed the SW test and the Runs test; BICc.  

TABLE II. ESTIMATES OF THE POPULATION PARAMETERS 

Fixed effects 
F [ ] k [ ] α [min−1] 𝑘𝑠𝑝 [min−1] 𝑘𝑒 [min

−1] 

0.88 (4) 0.823 (2) 0.00043 (24) 0.0013 (5) 0.107 (5) 

Standard deviations of the random effects 

ω𝐹[ ] ω𝑘[ ] ωα[ ] ω𝑘𝑠𝑝[ ] ω𝑘𝑒[ ] 

0.261 (44) 0.562 (15) 0.252 (46) 0.281 (13) 0.238 (12) 

Correlation parameter Error parameters 

ρ𝑘,𝑘𝑠𝑝 [ ] a [μU/mL] b [ ] 

0.474 (32) 0.754 (37) 0.0997 (15) 

Estimates of the population parameters and their precision (as RSE in 

brackets). Top: fixed effects of insulin Gla-100 absorption and kinetics; 

middle: standard deviations of the random effects 𝛈; bottom: correlation 

between the random effects of 𝑘 and 𝑘𝑠𝑝, and error model parameters. 
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(higher 𝑘𝑠𝑝). Conversely, every attempt to introduce a 

covariate in the model failed, even if some weak 

relationships were identified, such as the dependency of the 

fractional clearance 𝑘𝑒 on the body mass index (BMI) 

(Model 3) or of the bioavailability 𝐹 on patient’s age (Model 

4). These findings seem reasonable from a physiological 

point of view, but perhaps we could not find a significant 

correlation due to the limited number of subjects, the 

specific experimental set-up, and the pre-processing of data, 

which are limitations of this work. Another limitation of this 

work is that the analysis was limited to insulin Gla-100 as 

representative of long-acting insulin compounds. Moreover, 

the available data did not allow assessing the WSV since 

blood samples were taken after a single insulin 

administration for each subject. Furthermore, the BSV 

estimated using data collected in a controlled setting may be 

an underestimation of the real variability observable in daily 

life conditions. Finally, only 3 possible independent (age, 

BW and BH) and 2 derived covariates (BMI and body 

surface area) were considered in the analysis, and only a log-

transformation of them was tested together with their raw 

value. Additional studies are needed to validate the model in 

different experimental conditions and to assess the 

contribution of other possible covariates. 

V. CONCLUSIONS 

A NLME model describing the BSV of sc absorption of 

insulin Gla-100 has been presented. The model is able to 

accurately predict the insulin appearance in plasma from sc 

injection, and to provide an estimate of the BSV that affects 

this process. The incorporation of such model into 

simulation platforms of subjects with T1D or T2D (e.g., [6] 

and [10]) would allow running more realistic simulations of 

MDI therapy, providing great benefits on the development 

and testing of new treatment strategies. 
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Fig. 2. Residual analysis plots for Model 2. Panel A: observations on the y-axes are compared with individual predictions on the x-axis; the line x=y 

(continuous black line) and the 90% prediction interval (dashed black lines) are also displayed. Panel B and C: empirical distributions (blue bars) of 

IWRES (panel A) and of NPDE (panel B) compared with a standard Gaussian (black lines). 
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