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Abstract— In this paper, we present a cardiac computational
framework aimed at simulating the effects of ischemia on
cardiac potentials and hemodynamics. Proposed cardiac model
uses an image based pipeline for modeling and analysis of the
ischemic condition in-silico. We compute epicardial potential
as well as body surface potential (BSP) for acute ischemic
conditions based on data from animal model while varying both
local coronary supply and global metabolic demand. Single lead
ECG equivalent signal processed from computed BSP is used to
drive a lumped hemodynamic model and derive left ventricular
dynamics. Computational framework combining 3d structural
information from image data and integrating electrophysiology
and hemodynamics functionality is aimed to evaluate additional
cardiac markers along with conventional electrical markers
visible during acute ischemia and give a broader understanding
of ischemic manifestation leading to pathophysiological changes.
Simulation of epicardial to bodysurface potential followed by
estimation of hemodynamic parameters like ejection fraction,
contractility, blood pressure, etc, would help to infer subtle
changes detectable beyond conventional ST segment changes.

I. INTRODUCTION

Myocardial ischemia (MI) is caused due to insufficient
blood flow in some regions of myocardium leading to
decreased oxygen supply. Imbalance between myocardial
oxygen supply and demand dictates the pathophysiological
manifestation of the disease [1]. Clinical marker for MI are
changes observed in electrocardiogram (ECG), caused due to
shifts in ionic concentration related with oxygen deficiency
[2]. An apparent shift of ST segment occurs depending on
extent of ischemia, and can be localized through specific
leads of ECG that shows ST segment elevation or depres-
sion. Although ST segment shifts provides an estimate of
ischemic behavior, mostly in transmural ischemic cases, its
effectiveness and reliability as a marker for non-transmural
ischemia has been long debated. The ability of ST depression
to locate ischemia is considered much less specific, with
average accuracy rates ranging from 68-75% [3]. As MI is
predominantly initiated due to supply-demand imbalance, a
clear understanding of the hemodynamic changes involved in
the pathophysiological process responsible for genesis of MI
is essential for its evaluation along with ST segment changes
[4].

The biophysical basis for ECG evaluation of MI is based
on the notion of endocardial origin of intramural injury cur-
rents that lead to ST segment deflections within ECG record-
ings. Recent studies using animal models have emphasized
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on a more distributed ischemic growth pattern throughout the
myocardial wall, thus questioning the foundation of ischemic
progression analysis through ST depressions [5]. An alterna-
tive to extensive animal experimental procedures to study
ischemic effect is through in-silico cardiac computational
models [6]-[7]. Bulk of these models compute ischemic
effect through singular, subendocardial ischemic zones, using
cardiac volume conductor as a source to generate extracel-
lular potential [8]-[9].

Existing computational model on replicating the electrical
effects of ischemia concentrates more on distribution of the
extra-cellular potential and ischemic border zone dynamics
[10]-[11]. The effect of ischemic injury current on body sur-
face potential and its manifestation in form of conventional
ECG readings are neither simulated or addressed. Another
major drawback of in-silico cardiac models simulating is-
chemic effect lies in the fact that these models predomi-
nantly simulates only the electrophysiological (EP) changes,
completely omitting the effect of hemodynamics and au-
toregulatory mechanisms. Ischemic effects compromises my-
ocardial contractility, leading to pump inefficiency and heart
failure [12]. These changes are expressed through variations
in cardiac hemodynamic parameters. Cardiac computational
models integrating the dual aspect of EP and hemodynamics
are required to understand and predict ischemic progression
leading to heart failure.

Motivated by the limitations in current cardiac in-silico
models in manifesting ischemic dynamics, we aim to create
a 3D cardiac computational model, coupling the effect of
electrophysiology (EP) and hemodynamics. The proposed
model would aid to create a deeper understanding on the
pathophysiological manifestation of MI, starting from its
inception in myocardial tissue to its effect in Body surface
potential (BSP) variation, along with its effect on left ven-
tricle dynamics, translated to pumping function of heart.

Proposed cardiac computational model consists of a 3D
cardiac structure, computed from MRI slices through seg-
mentation and meshing and finite element methods to com-
pute extracellular and epicardial potential in ischemic con-
dition using experimental torso-tank data of a canine [13].
Forward EP is implemented using a Bi-domain source model
and is used to compute BSP and a single lead ECG equiv-
alent from epicardial potential distribution. The simulated
ECG from the EP framework is used to drive the lumped
hemodynamic model, consisting of 4 chambered heart with
pulmonic and systemic circulation, capable of capturing the
pressure volume dynamics of all the cardiac chambers for
each and every phase of cardiac cycle. We compute EP and
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Fig. 1: Schematic of the cardiac computational model functional blocks

hemodynamic parameters for a series of acute ischemia by
varying both local coronary supply and global metabolic
demand, giving rise to two specific ischemic group, naming
‘Supply ischemia’ and ‘Demand ischemia’.

II. METHODOLOGY

The workflow for the proposed cardiac model is two fold,
highlighted below:
• 3D cardiac computational model to compute cardiac po-

tential distribution during Supply and Demand Ischemia
• Simulation of BSP and coupling of the computational

model with hemodynamic model to derive pressure-
volume dynamics

For the 3D cardiac modeling pipleline, we created a volume
conductor model of an ischemic heart based on Utah torso
tank data. The MR images of the heart were derived from
a canine heart that was scanned to obtain anatomy, fiber
orientation and the perfusion bed of left anterior descending
(LAD) artery. For experimental studies, canine heart is
often used as a substitute of human heart due to the close
similarity in conduction system [14]. From these MR slices,
extra-cellular cardiac potentials were estimated. For linking
hemodynamics functionality, first, BSP were derived using
extra-cellular cardiac potential and subsequently, the single
lead ECG equivalent was used to drive the hemodynamic
module. Work-flow schematic of the developed model is
shown in Fig.1.

A. Torso Tank data

Imaging data along with geometry information for mesh-
ing and conductivity were used from the ‘double dog exper-
iment’ data [13] and is summarized in brief. The experiment
described was performed under deep anesthesia, where an
isolated heart from one dog was perfused via blood from the
support dog. LAD region of the isolated heart was cannulated
and occluded. A pacing clip in right ventricle provided heart
rate control. Epicardial potential were recorded using a 247-
electrode epicardial sock along with 40 intramural needle
electrode around the occluded LAD section. The isolated,
perfused heart was suspended in a human torso shaped tank
with 192 electrodes and filled with an electrolytic solution.

The study protocol was designed to vary the supply-
demand equilibrium by combining elevated heart rate (de-
mand) and reduced coronary flow (supply) in different com-
bination. Out of the complete data-set, we have utilized
a particular set of supply and demand variation; Supply

variation from 20ml/min to 5 ml/min in four consecutive
experiments, decreasing the flow rate in steps of 5 ml/min
with a fixed pacing rate of 350 ms (S1,S2,S3,S4). Four
similar demand experiment at 15 ml/min fixed flow, varying
pacing rate from 350 ms to 275 ms, at step of 25 ms per
experiment (D1,D2,D3,D4). For each supply and demand
experiment, reading were taken for an occlusion cycle of
180 sec, spanned in to three consecutive reading at initiation
(0 sec), 90 sec and 180 sec. In total there are 12 individual
experimental runs for each supply and demand group along
with their respective control(c) run. Control for both supply
and demand had flow of 35ml/min.

B. 3D Computational model

Computational pipeline leading to 3d cardiac model com-
prises of segmenting the MRI scans to extract area of
interest (ventricular section with occlusion) using Seg3D [15]
followed by volumetric mesh generation using BioMesh3D
[16]. DW-MRI images from the dataset were used to define
principal eigenvectors associated with each voxel within the
heart volume, which corresponded to fiber orientation within
the heart, used to compute anisotropic conductivity tensors.
Bidomain model implementation to derive extracellular po-
tential, forward EP computation and visualization were all
done in SCIRun enviorenment [17].
Extracellular and epicardial potential inherent to ischemic
condition is modulated through generation and propagation
of injury currents. In order to model these currents to
simulate the effect of ischemia, description of the electrical
properties of both the intracellular and extracellular spaces
are required. These spaces can be modeled as anisotropic
volume conductors having the shape of heart and anisotropy
caused by fiber structure of the myocardium. The governing
partial differential equations to solve in both spaces are [11]:
∇.Σi∇φi = imem; ∇.Σe∇φe =−imem where, φi and φe are the
intracellular and extracellular potentials, Σi, and Σe are the
conductivity tensors of both spaces and imem is the current
through the membrane. Net transmembrane potential (TMP)
can be defined as: Vm = φi− φe. Combining the TMP and
membrane current equations results in defining extracellular
potential as a function of TMP (Vm): ∇.(Σi + Σe)∇φe =
−∇.Σi∇Vm.

To solve for a specific heart, description of Σi and Σe
as a function of space along with description of how Vm
changes throughout the ischemic zone is required. These
constraints are set using Neumann boundary condition along
the epicardial surface and Cauchy boundary conditions along
the endocardium, expressed as:

−→n epi.(Σe +Σi)∇φe = 0 x ∈ ∂ΩM,epi
−→n endo.(Σe∇φe) =

−→n endo.(Σb∇φb) x ∈ ∂ΩM,endo

φe = φb x ∈ ∂ΩM,endo

φi = 0 x ∈Ωb

(1)

where, φe and φb are the potentials within the extracellular
cardiac tissue and blood domains, respectively, and ΩM
represents the cardiac volume, which is bounded by the
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epicardial (∂ΩM,epi) and endocardial(∂ΩM,endo) surfaces
with their respective surface normal unit vectors −→n epi and
−→n endo . Conductivity tensor were extracted from DTI images
by decomposition of the tensor from fiber orientation and
extracting the dominant direction. The resulting volume con-
ductor equation was solved using Galerkin method, reducing
it to a finite element weak PDE form, computed in SCI
environment.

C. Forward EP and BSP generation

EP model largely comprises of solving the forward prob-
lem, i.e, calculating body surface potential from a known
heart potential [18]. The general simulation framework is
similar to the volume conductor model and bidomain simu-
lation used to generate extracellular potential in previous sec-
tion. The governing equation in forward EP is the modified
steady state electrical potential in an in-homogeneous volume
conductor described by Laplace equation: ∇.(σ∇φ) = 0,
where, σ is the conductivity tensor field and φ is the electric
potential. This is subjected to Dirichlet boundary condition
(φ(x,y,z) |Ωk= Vk), applied anywhere the electric potential
is known and Neumann boundary conditions ( ∂φ

∂n |Ω= 0)
applied on the surface of the object being simulated. Vkis
the known potential of electrode k (placed at torso), and Ωk
specifies the domain coincident with electrode k placed at
the torso.

FEM applied in this volume model begins by subdividing
the geometry into a set of volume elements with vertices
at a set of nodes, and then approximating the potential in
the volume by a basis expansion: φ̄(x,y,z) = ∑φiNi(x,y,z) ,
where Ni are a set of basis functions, one for each node in the
volume element discretization, and φi are the corresponding
coeffcients at those nodes. This is solved using SCIRun en-
viorenment [19]. Human torso geometry data were obtained
from a dataset developed by SCI Institutes NIH/NIGMS
CIBC Center [20]. 192 tank electrode data were imposed on
the torso model to form a computational mesh. Torso images
were segmented based on the major organs in the torso with
tissue conductivity values as specified in literature [21].

Fig.2 shows an instance of simulated cardiac and torso
potential at ventricular repolarization phase (precisely ST
segment at 40%), for one particular supply and demand
condition along with the control non-ischemic simulation.
As evident in the figure, for ischemic simulation, due to
the generation of ischemic current, potential distribution at
both epicardial and torso surfaces shows increased potential
gradient compared to the non-ischemic control part. From
the resultant BSP expressed as potentials recorded at 192
locations, single lead ECG signal corresponding roughly to
Lead V location was used in successive computations.

D. Hemodynamic Coupling

Hemodynamic model consists of a four chambered heart
with systemic and pulmonic circulation along barore-
flex auto-regulation, described earlier in [22]. Coupling
of EP and hemodynamics block is through a compli-
ance function, which determines the time-varying com-

Fig. 2: Simulated cardiac and torso potential for Ischemic and non-Ischemic
conditions along with Single lead representative ECG

pliance of auricles and ventricle and brings about the
pumping action of the heart [23]. Single lead ECG sig-
nal (Fig.2) can be decomposed based on features like
peak amplitudes and corresponding cardiac cycle time
of major events like ventricular depolarization, repolar-
ization, etc. As shown in Fig.2, PQRST events are
expressed as in generic ECG signal for one cardiac
cycle

[
(AP, tP) (AQ, tQ) (AR, tR) (AS, tS) (AT , tT )

]
re-

spectively. These amplitude and time stamps are used to map
time-varying compliance functions for the cardiac chambers.
Compliance function for ventricles (Clv, and Crv) are ex-
pressed as:

Ci(t) =Ci×uv(t−d), i ∈ {lv,rv} (2)

uv(t) =


0.5−0.5cos

(
π

t
T1

)
, 0≤ t < T1

0.5+0.5cos
(

π
t−T1

T2−T1

)
, T1 ≤ t < T2

0, T2 ≤ t < T

(3)

where uv(t) is the activation function, and d = (tR− tP) rep-
resents the delay in activation of ventricles, T1 = (Tr +Tt)/2
and T2 = Tt are the systolic and diastolic duration of the
cardiac cycle (T ) respectively. The ventricular-compliance
(Ci;∀i ∈ {lv,rv}) are computed by the ratio between the R-
peak and T-peak ( Ci =

AR
AT

).
From the hemodynamic model, parameters like mean

arterial pressure (MAP), complete dynamics of left ventricle
(LV), cardiac output (CO), stroke volume (SV), ejection
fraction (EF), end systolic, end diastolic pressure, volume
(ESP, EDP, ESV, EDV) and their respective ratio (ESPVR,
EDPVR) can be calculated which reveals concise information
related to the state of heart and cardiovascular system.

III. RESULT AND DISCUSSION

Using the developed computational model, we simulated
BSP and lead V equivalent ECG for the 12 different supply
and demand ischemia setup along with the control condi-
tion and derived hemodynamic parameters associated with
generic LV functioning. Fig.3 shows the simulated ECG
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Fig. 3: Simulated single lead ECG for Demand and Supply ischemia runs

TABLE I: Cardiac parameters for Supply-Demand ischemic runs

Condition δST HR RPP EF ESPVR EDPVR Condition δST HR RPP EF ESPVR EDPVR

Demand1,1 0.0714 136.36 215.03 39.23 0.0829 1.9969 Supply1,1 0.0334 117.6 173.28 43.2 0.0815 1.9776
Demand1,2 0.0652 133.92 209.25 39.74 0.0802 2.0048 Supply1,2 0.0269 128.20 198.58 40.67 0.0810 1.9854
Demand1,3 0.0676 130.43 201.38 40.23 0.0864 1.9963 Supply1,3 0.0551 132.15 206.49 39.95 0.0878 1.9929
Demand2,1 0.0437 135.4 212.82 39.39 0.0801 2.0025 Supply2,1 0.0435 127.65 197.11 40.8 0.0810 1.9985
Demand2,2 0.0354 124.48 188.93 41.60 0.0814 1.9869 Supply2,2 0.0393 127.38 196.35 40.87 0.0810 1.9796
Demand2,3 0.0469 130.43 205.32 40.00 0.0910 2.0042 Supply2,3 0.0596 129.03 201.37 40.46 0.0814 1.9920
Demand3,1 0.0706 138.89 220.27 38.91 0.0799 2.0045 Supply3,1 0.0528 127.38 195.29 40.87 0.0817 1.9837
Demand3,2 0.0556 130.71 204.82 40.06 0.0811 2.0023 Supply3,3 0.0878 126.84 194.23 40.93 0.0817 1.9977
Demand3,3 0.0817 128.20 197.97 40.82 0.0810 1.9951 Supply3,3 0.0903 136.98 217.94 38.93 0.0805 1.9980
Demand4,1 0.0858 129.58 202.01 40.40 0.0812 1.9901 Supply4,1 0.0831 129.58 202.31 40.72 0.0828 1.9968
Demand4,2 0.0866 132.15 206.72 39.93 0.0834 1.9943 Supply4,2 0.1021 138.88 205.81 40.61 0.0807 2.0044
Demand4,3 0.0885 132.74 207.37 39.89 0.0804 2.0071 Supply4,3 0.0978 129.87 221.07 38.48 0.0801 1.9928
Demandc 0 102.73 143.92 46.47 0.0837 1.7921 Supplyc 0 106.19 150.51 45.60 0.0826 1.9479
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Fig. 4: PV loop for a) Supply conditions; b) Demand conditions

signal for demand and supply group. As evident from the
curves, ST segment variation is very limited in all the
plots, mainly due nontransmural nature of the ischemia.
Hence, only ST segment or even other conventional markers
like QRS amplitude or T wave amplitude do not provide
meaningful insights or any differentiation between supply
group or the demand group. Supply group 1 to 4 had reduced
coronary supply from 20ml/min in group 1 to 5 ml/min
in group 4. For group 4, ST segments were depressed for
all three readings compared to the control data, indicating
ischemic behavior. No such confirmatory trend are observed
through simulated ECG for the demand groups or the other
supply group.

Fig.4 shows the hemodynamic parameter variations across

the supply and demand group in form of LV pressure-volume
(PV) loop. PV loop holds information related to the cardiac
phases and action of the valves during a cardiac cycle. All
relevant medical markers like ESV, EDV, ESP, EDP are
calculated from PV loop, which is again used to calculate the
derived clinical index of EF, SV, contractility and stiffness
of myocardial tissues. PV loops were generated for initial
cardiac instance (0 sec) for 4 group of demand and supply
ischemia against their control. As seen in Fig.4a, for the
supply group, a clear gradation with respect to flow constraint
is evident in the plot. Group 4 with flow rate of 5 ml/min
shows increased ESP and ESV with respect to control and
other group, indicating a reduced ejection fraction and com-
promised LV functionality. For demand cases (Fig.4b), PV
loop shrinks for all the groups against the control, indicating
an overall reduction in SV and EF. There is also marked
increase in systolic pressure, indicating a hypertension trend.
Comparing in between groups, as the pacing rate decreases
from group 1 to 4, PV loop characteristic slightly shifts
towards the control group, trend more prominent for the 4th
group with pacing time of 275 ms. Unlike demand group,
where distinction between group 1, 2 and 3 are negligible,
for the supply group, the effect of reduced flow is more
pronounced between groups.

Table I lists all the potential markers derived from our
model that could differentiate ischemic progression along
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with the conventional ST segment changes. The parameters
are change in ST segment amplitude at 40% duration of ST
phase wrt control ECG (δST ), adjusted Heart rate (HR), rate
pressure product (RPP), which is the product of heart rate and
systolic BP, EF, ESPVR which correlates with ventricular
muscle stiffness and EDPVR correlating with contractility
for demand and supply group. Changes in δST do not follow
any explainable trend, again pointing out the limitation of
ST segment evaluation for non transmural ischemic events.
Adjustment in terms of baroreflex autoregulation brings
down heart rate despite high pacing rate of initiation. For the
demand groups, as pacing rate increases, HR also increases
but within the same group, HR is maximum for initial
instance (0 sec) and slowly decreases as time progress in-
dicating the regulatory effect of hemodynamical adaptation.
For the supply group, with decrease in flow, HR increases, as
should be the trend [24]. Product of heart rate and systolic BP
are frequently referred to as the most important determinant
of myocardial oxygen demand [25]. Higher the value, more
intense the ischemic effect. For RPP, Supply group indexes
are more consistent compared to the demand counterpart.
This is partly due to more pronounced effect of HR in
the demand group due to change in autoregulation with
changing rate of pacing. EF is the most important index
that determines LV pumping functionality and it follows
a decreasing trend as ischemic effect increases, correlating
with medical trends. Here also, supply group results are more
consistent than demand counterpart. In terms of ventricular
stiffness index (ESPVR), as ischemia progresses, scar tissue
generation makes ventricular walls more stiff, thus reducing
the net pumping action. In demand group, ESPVR shows
slight variation, mostly prominent at initiation of ischemic
event but no specific trend was observed for the supply
group, with overall ESPVR remaining almost similar for all
group variation. Similarly for EDPVR, variations for both
supply and demand group are insignificant. This is mostly
due to nontransmural nature and a low to moderate severity
of ischemic simulation.

IV. CONCLUSION

In this paper, we propose a 3D cardiac model involving
image based processing pipeline and integrating EP and
hemodynamics functionality to study the effect of two is-
chemic groups, naming supply and demand ischemia. Re-
sults indicate that hemodynamic parameters along with EP
parameters provide a holistic understanding on the behav-
ior of supply and demand ischemic manifestation. A clear
understanding of the hemodynamic changes involved in the
pathophysiological process responsible for genesis of MI is
essential for understanding disease progression and also in
clinical applications like selection of anti ischemic drug or
specific therapy for a particular disease type manifestation.
Through the insights captured from the developed model,
alternative hemodynamic biomarkers can be associated with
nontransmural ischemic progression for better characteriza-
tion of the ischemic region.
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