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ABSTRACT 

 
The study of brain network connectivity as a time-varying 
property began relatively recently and to date has remained 
primarily concerned with capturing a handful of discrete 
static states that characterize connectivity as measured on a 
timescale shorter than that of the full scan. Capturing group-
level representations of temporally evolving patterns of 
connectivity is a challenging and important next step in fully 
leveraging the information available in large resting state 
functional magnetic resonance imaging (rs-fMRI) studies. 
We introduce a flexible, extensible data-driven framework for 
the identification of group-level multiframe (movie-style) 
dynamic functional network connectivity (dFNC) states. Our 
approach employs uniform manifold approximation and 
embedding (UMAP) to produce a planar embedding of the 
high-dimensional whole-brain connectivity dynamics that 
preserves important features, such as trajectory continuity, 
characterizing dynamics in the native high dimensional state 
space. The method is validated in application to a large rs-
fMRI study of schizophrenia where it extracts naturalistic 
fluidly-varying connectivity motifs that differ between 
schizophrenia patients (SZs) and healthy controls (HC).   
 

Index Terms— Functional Magnetic Resonance 
Imaging, Functional Network Connectivity, Dynamic 
Functional Network Connectivity, Schizophrenia 
 

1. INTRODUCTION 

The study of brain network connectivity as a time-varying 
property began relatively recently and to date has remained 
primarily concerned with capturing a handful of discrete 
static states that characterize connectivity as measured on a 
timescale shorter than that of the full scan. Capturing group-
level representations of temporally evolving patterns of 
connectivity is a challenging and important next step in fully 
leveraging the information available in large resting state 
functional magnetic resonance imaging (rs-fMRI) studies. 
We introduce a flexible, extensible data-driven framework 
for the identification of group-level multiframe (movie-style) 
dynamic functional network connectivity (dFNC) states. Our 
approach employs uniform manifold approximation and 
embedding (UMAP) to produce a planar embedding of the 
high-dimensional whole-brain connectivity dynamics that 

preserves important from the high dimensional setting such 
as subject-level trajectory continuity and group-level 
proximity of subject trajectories. The method is shown to 
produce naturalistic, interpretable evolving dynamic 
functional network connectivity trajectory states 
(EVOdFNCs) whose role in the dynamic SZ vs. HC 
connectomes differ significantly and interpretably, 
suggesting the method holds promise for identifying more 
sophisticated dynamical biomarkers from resting-state fMRI 
than has thus far been possible. 

2. METHODS 
2.1 Data 

We use data from a large, eyes-open resting-state fMRI study 
with approximately equal numbers of schizophrenia patients 
(SZs) and healthy controls (HCs) (𝑛=311, nSZ=150). 
Imaging data for six of the seven sites was collected on a 3T 
Siemens Tim Trio System and on a 3T General Electric 
Discovery MR750 scanner at one site.. The data was 
preprocessed with a standard, already published [1, 2], 
pipeline and decomposed with group independent component 
analysis (GICA) into 100 group-level functional network 
spatial maps (SMs) and corresponding subject-specific 
timecourses (TCs). Through a combination of automated and 
manual pruning, 𝑁=47 functionally identifiable networks are 
retained. Subject specific spatial maps and timecourses were 
obtained from the group level spatial maps via spatio-
temporal regression. The timecourses were detrended, 
despiked and subjected to some additional postprocessing 
steps. All subjects in the study signed informed consent 
forms. 

2.2 Dynamic Functional Network Connectivity 

Dynamic functional connectivity (dFNC) between RSN 
timecourses was estimated using sliding window 
correlations. Following protocols from recent studies, 
dynamic functional network connectivity (dFNC) was 
estimated using pairwise correlations between RSN 
timecourses on tapered sliding rectangular windows of length 
22 TRs (44 seconds), advancing 1 TR at each step [2]. After 
dropping the first 3 TRs, this procedure yields a 
47 47 1 2⁄ 1081-dimensional dFNC measure on each 
of 136 windows of length 22TRs for each subject. 

2.3 Planar Embedding 
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We apply a Matlab implementation [3, 4] of uniform 
manifold approximation and embedding (UMAP) to embed 
all 1081-dimensional dFNCs into the plane. Since dFNCs are 
computed on sliding windows that advance one TR at a time, 
they exhibit considerable temporal smoothness in their native 
high-dimensional space. This within-subject smoothness is 
an intrinsic feature of the actual dynamics, which we 
heuristically optimize UMAP’s two main parameters 
(n_neighbors=25; mindist=0.75) toward conserving in the 
planar embedding. It is worth quickly noting that linear 
dimension-reduction methods such as PCA or ICA produced 

diffuse 2D clouds lacking any temporal or intra-subject 
continuity, while t-SNE performed more than 200-fold more 
slowly than UMAP on this data, and thus was not practical 
for achieving a planar embedding of the entire dataset. 

 
2.4 Identification of 2D Linear Trajectory Exemplars  

Due to our choice of UMAP parameters within intervals that 
preserve intra-subject trajectory continuity, the majority of 
each subject’s high-dimensional dFNC trajectoryΓ 𝑡
𝑣 𝑡 , 𝑣 𝑡 , … , 𝑣 𝑡  embeds, under the 𝑟  run of 

UMAP, into an approximately continuous segment γ 𝑡
𝑥 𝑡 ,𝑦 𝑡  in 2D. Continuity is preserved under 

summation, so the average 𝛾 𝑡 𝑥 𝑡 ,𝑦 𝑡

∑ 𝑥 𝑡 , ∑ 𝑦 𝑡 ∈ ℰ 𝒟  will also be 

continuous. We collect all continuous trajectory sub-
segments (CTSs) 𝛼 𝛾 𝛾 𝑡 , 𝑡 ∈ 𝑡 , 𝑡 𝜏 , 𝑗
1,2, … ,𝑇 𝜏 along 𝛾 𝑡  of temporal duration 𝜏 44 (twice 
the windowlength used to estimate the dFNC observations in 
𝒟).  Each 𝛼 𝛾  can be approximated by a line 𝐿 , yielding a 
reduced  characterization 𝑥 ,𝑦 ,𝑚 , ℓ   of 𝛼 𝛾  in terms of 
its length ℓ max

, ∈ ,
‖𝛾 𝑡 𝛾 𝑡 ‖ , its geometric 

midpoint 𝑥 ,𝑦   and the slope 𝑚  of its linearization 𝐿 . The 
linearized trajectory segment (LTS) triples: 𝑥 ,𝑦 ,𝑚  are 

then clustered with k-means (Matlab implementation, 
squared Euclidean distance, 2000 iterations, 250 repetitions) 
where the number of clusters,  𝐾 10, was chosen according 
to the elbow-criterion. From each of the 𝐾 10 LTS cluster 
centroids: 𝑥 ,𝑦 ,𝑚  we induce a 2D line segment of length 
𝑑  (equal to the mean length of all LTSs in that cluster) and 
slope 𝑚  centered at 𝑥 ,𝑦 . These segments are, roughly 
speaking, gradients of the CTSs, which are in turn averages 
of continuous embedded segments of the high dimensional 
dFNC dynamics. The collection of segments induced by LTS 
cluster centroids will be called linear trajectory exemplars or 
just exemplars (see schematic Figure 1, top left and bottom).    

2.5 High-Dimensional Multiframe Evolving dFNC 
(EVOdFNC) States from 2D Linear Exemplars 

Figure 1 Overview schematic exhibiting the pipeline for producing representative evolving multiframe high-dimensional states of dynamic functional network
connectivity (EVOdFNCs). High-dimensional dynamic functional connectivity (HD-dFNC) assessed as pairwise correlations on sliding windows through each 
subject’s GICA network timecourses (top left) are embedded (bottom left) into 2D using uniform manifold approximation and projection (UMAP). Although 
unsupervised, since it is parameterized to preserve continuity, UMAP embeds subject HD-dFNC observations into contiguous identifiable planar curves. For
greater stability we use the average of 𝑅 25 embeddings. We replace the curves with a sequence of local linear approximations to segments of duration 𝜏
44 TRs (twice the window-length on which dFNCs are computed), The linearized segments are parameterized by their position and slope, then clustered to
create a set of 2D “linear exemplars” that capture regionally dominant directional trends in the embedded group dynamics (bottom right). Finally, these 2d 
exemplars are lifted back to high-dimension by averaging the inverse images of the 25 planar nearest neighbors to  𝜏 44 evenly spaced points along the 
exemplar. Exemplars are given geometric length equal to the mean length of the segments in their cluster. 
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Because UMAP is not straightforwardly invertible, the 2D 
linear trajectory exemplars cannot be mapped back directly 
into the high-dimensional dFNC space. To obtain the high 
dimensional HD-dFNC trajectory segment Υ of integer 
temporal duration 𝜏 corresponding to a given 2D linear 
trajectory exemplar 𝜐, (i.e., the “data driven inverse” of 𝜐), 
we average the high-dimensional observations corresponding 
to the 𝑛 25 nearest 2D neighbors of each of 𝜏 evenly 
spaced points along 𝜐. The number of 2D neighbors used to 
invert UMAP, 𝑛 25, was chosen to match the number of 
nearest neighbors parameter in employed in the UMAP 
embedding. This operation effectively “lifts” a localized 2D 
linear trajectory exemplar back into high-dimensional dFNC 
space. The 2D linear trajectory exemplars are, by 
construction, concentrated in more densely occupied parts of 
the plane, and the continuity preserving parameterization of 
UMAP encourages the high-dimensional data-driven inverse 
of each 2D linear trajectory exemplar to exhibit naturalistic 
smoothness. These high dimensional inverse images of the 
2D linear trajectory exemplars are each multiframe 
representations of evolving functional network connectivity 

(EVOdFNCs) (see schematic Figure 1, top right). Although 
EVOdFNCs have 𝜏 44 frames, for better visualization we 
display a subsampled version of the EVOdFNCs produced by 
applying the inversion procedure above to 25 evenly spaced 
points on the exemplars, yielding a more coarsely sampled 
version of the EVOdFNC that is actually used in the analysis. 

2.6 Expressing Observed HD dFNCs Using EVOdFNCs 

Although produced by a clustering step in the 2D segment 
space, the HD EVOdFNCs are more properly viewed as 
representations of dominant directional trends in the dFNC 
data than as a hard segmentation of the observed dynamics 
and we employ them as a parameterization rather than a 
segmentation of multiframe dynamic evolution in HD dFNC 
space. Observed dFNC windows of length-𝜏 are expressed in 
terms of the 𝐾 length-𝜏 EVOdFNCs by weighting each 
EVOdFNC with the proportion in 0,1  of frames in 
observation that are maximally correlated to the 
corresponding frame in that EVOdFNC).  

2.7 Statistical Modeling 

Reported SZ effects are from a multiple regression on gender, 
age, head motion and SZ, and are only reported when 
significant at the 𝑝 0.05 level after correction for multiple 
comparisons. 

3. RESULTS 

We find widespread schizophrenia effects on the 
contributions EVOdFNCs make to subject data (Figure 

2Error! Reference source not found.) and most importantly 
this analysis exposes the differences in SZ and HC 
trajectories that pass through similar patterns of whole-brain 
resting state connectivity. For example, in the case of subjects 
lingering in patterns of negative default mode network 
(DMN) connectivity to other functional domains, the HCs are 
significantly more likely to arrive there by dissolving some 
earlier highly modularized structure involving positive 

Figure 2 There are pervasive group differences between schizophrenia patients and controls in representational importance of the 𝐾 10
EVOdFNCs; thick red (resp. thick green) boxes designate significant positive (resp. negative) association with SZ after correction for multiple 
comparisons; thin dashed red box designates significant (𝑝 0.025) positive association with SZ that is not significant after correction for
multiple comparisons. Omitted colorbar is bounded in 0.3,0.3 . 
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Auditory-Visual-Sensorimotor (AVSM) connectivity and 
negative AVSM connectivity to Cognitive Control (CC) and 
DMN, while SZs find their way to the negative DMN-to-
Other pattern by modularizing from weaker more diffuse 
connectivity (Figure 3). These findings are consistent with 
facts about the static connectivity (both full scan, and time 
resolved) of HCs and SZs but this analysis allows much more 
refined parsing of how certain types of functional integration 
are achieved or suppressed.  

4. DISCUSSION 

Characterization and analysis of the time-varying resting 
state connectome continues to rest heavily on identifying a 
small number of fixed whole-brain connectivity patterns that 
manifest on timescales shorter than the full scan duration. The 
small set of fixed “states” is then then employed to model 
brain dynamics as a stationary Markov process, with the brain 
occupying and transitioning between this small set of fixed 
patterns. More sophisticated analyses of the complex 
dynamical processes that support human cognitive, 
emotional, executive and motor functions require 
frameworks for characterizing and leveraging the fluidly 
varying high dimensional dynamics of presented by 
functional imaging modalities such as fMRI. Here we 
introduce an approach that works from a data-driven 
inversion of the dynamic gradients in a planar embedding of 
the high-dimensional dynamics to capture group-level 
multiframe evolving “movie-style” representations of  
dynamic functional network connectivity (EVOdFNCs) in a 
large 
schizophrenia 
imaging study. 
The method has 
produced 
plausible, 
interpretable, 
naturalistic 
high-
dimensional 
EVOdFNC 
states, whose 
contributions to 
HC and SZ 
dynamic 
connectivity 
differ 
significantly, 
and which 
expose how 
differently the 
two groups 
manifest and 
recede from 
certain 
characteristic 
organizational 

states of the connectome, such as the pattern in which DMN 
is anticorrelated with other networks and non-DMN networks 
are all lightly intercorrelated with each other. We believe this 
is an important first step toward more sophisticated analysis 
of high dimensional functional imaging data, allowing 
researchers to more finely resolve the relationship of longer 
dynamic processes to human health and performance.  
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Figure 3  Top row shows two EVOdFNCs (rightmost in green is significantly more important in HCs than SZs; leftmost 
in red is significantly more important in SZs than HCs. The underlying exemplars (bottom row, in red and green ovals 
respectively) are proximal but have different slopes, representing different ways of passing through this region of the 
embedding and sufficiently different trajectories in the high-dimensional source space that one is more characteristic 
of HCs and the other of SZs. 
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