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Abstract— Emotion recognition based on electroencephalog-
raphy (EEG) plays a pivotal role in the field of affective
computing, and graph convolutional neural network (GCN) has
been proved to be an effective method and made considerable
progress. Since the adjacency matrix that can describe the
electrode relationships is critical in GCN, it becomes necessary
to explore effective electrode relationships for GCN. However,
the setting of the adjacency matrix and the corresponding
value is empirical and subjective in emotion recognition, and
whether it matches the target task remains to be discussed.
To solve the problem, we proposed a graph convolutional
network with learnable electrode relations (LR-GCN), which
learns the adjacency matrix automatically in a goal-driven
manner, including using self-attention to forward update the
Laplacian matrix and using gradient propagation to backward
update the adjacency matrix. Compared with previous works
that use simple electrode relationships or only the feature
information, LR-GCN achieved higher emotion recognition
ability by extracting more reasonable electrode relationships
during the training progress. We conducted a subject-dependent
experiment on the SEED database and achieved recognition
accuracy of 94.72% on the DE feature and 85.24% on the PSD
feature. After visualizing the optimized Laplacian matrix, we
found that the brain connections related to vision, hearing, and
emotion have been enhanced.

I. INTRODUCTION

Emotion recognition plays an important role for humans
to achieve barrier-free human-computer interaction. There
are many methods for emotion recognition. For example,
preliminary emotion recognition can be achieved by analyz-
ing human behavior, such as gesture language, voice, and
facial expressions. But sometimes, people can conceal their
true intentions by forging behavior, which makes the above
methods misjudgment. Another effective way to recognize
human emotion is to analyze physiological signals, such as
EEG [1], electrocardiogram (ECG) [2] and electromyogram
(EMG) [3]. Compared with behavioral signals, physiological
signals can better reflect the true emotional state of human
beings. With the rapid development of EEG signal process-
ing, EEG-based emotion recognition has been extensively
studied.

Typical EEG-based emotion recognition is consists of
EEG signal recording, preprocessing, feature extraction and
emotion classification. EEG information is recorded by con-
necting a certain number of electrodes on the scalp to mea-
sure voltage fluctuations in the cerebral cortex of different
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brain regions. Then the raw data will be preprocessed to
remove noise and artifacts. After that, the processed EEG
signals are decomposed to five common frequency bands,
i.e., δ band (1-3Hz), θ band (4-7Hz), α band (8-13Hz), β
band (13-30Hz) and γ band (30-51Hz). Feature extraction
methods can be basically categorized into three kinds: fre-
quency domain, time domain and time-frequency domain.
The commonly used frequency domain feature extraction
method are differential entropy (DE) [4] and power spectral
density (PSD) [5]. Finally, emotion recognition is performed
on the emotion data after feature extraction. Emotion recog-
nition methods can be divided into traditional methods and
methods based on deep learning, and with the development
of deep learning, the latter has been widely used in the field
of emotion recognition.

There have been many works applying deep learning
for EEG-based emotion recognition. Zheng et al. [6] first
applied a deep belief network (DBN) for EEG-based emotion
recognition. Combining the 2D spatial information with
the extracted feature of different electrodes, convolutional
neural networks (CNN) based and recurrent neural networks
(RNN) based emotion recognition are realized [7], [8]. In
addition, with the help of transfer learning, fast online
emotion recognition was also realized [9]. But in reality,
the distribution of brain electrodes is not grid-like, but an
irregular connection. To take advantage of the relationship
between the irregular electrode connections, Song et al.
[10] applied graph convolution into the field of emotion
recognition and introduced a method that can dynamically
update the adjacency matrix. To further utilize the features
extracted by a graph structure, Zhang et al. [11] designed
a graph convolutional broad network (GCB-net) to explore
the deeper-level information of emotion data. A regular-
ized graph neural networks (RGNN) [12] based on node-
wise domain adversarial training (NodeDAT) and emotion-
aware distribution learning (EmotionDL) also achieved good
emotion recognition ability. However, the adjacency matrix
that can accurately describe the correlations between brain
electrodes is unknown, which makes it very important to
explore more reasonable electrode relationships for GCN-
based EEG emotion recognition.

Inspired by the work of DGCNN, we further explore the
role of learnable graph structure for emotion recognition and
proposed LR-GCN, which combined attention-based forward
update the Laplacian matrix with backward update the ad-
jacency matrix and obtained the best recognition accuracy.
The experiment results proved that introducing an attention
mechanism to update the Laplacian matrix can improve the
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accuracy of emotion recognition from 92.34% to 94.72%
on the DE features, and the emotion recognition accuracy
on the PSD features is 85.24%. Besides, we visualized the
optimized Laplacian matrix and found that some key connec-
tions were strengthened in the frontal, occipital, and temporal
lobes. The above-mentioned brain regions are highly corre-
lated with emotions caused by vision and hearing, which
indicates that our proposed LR-GCN improves the emotion
recognition accuracy by obtaining more reasonable electrode
relations.

II. METHOD

In this section, we will introduce the preliminaries of
the spectral graph convolution and graph attention networks
(GAT) [13], which are the basis of our proposed LR-GCN.
After that, we will introduce more details of LR-GCN and
its two paths to update the electrode relationships.

An undirected graph can be expressed as G = (V, E),
in which V is the set of nodes and E represents the set of
edges that connect different nodes in V . Combining all the
connections in E into a matrix, it was adjacency matrix A ∈
Rn×n, and data on V can be represented as a feature matrix
X ∈ Rn×d, where n denotes the number of nodes and d is
the dimension of input features.

A. Spectral Graph Convolutional Network

The spectral graph theory is an effective method for
processing structured data and has achieved great success in
the field of social networks, knowledge graphs, etc. Spectral
graph convolution relies on the Laplacian matrix L = D−A
or the normalized Laplacian matrix L̂ = I−D−

1
2 AD−

1
2 =

D̂−
1
2 ÂD̂−

1
2 to represent the node connection relationships.

where I is the n-th order identity matrix and D denotes the
diagonal degree matrix of A, i.e., Dii =

∑
j Aij . D̂ and

Â are the normalization of D and A, respectively. Since
L̂ is a symmetric positive semi-definite matrix, it can be
decomposed as L̂ = UΛUT, in which U is the orthonormal
eigenvector matrix of L̂, UT is the transposition of U, and
Λ = diag(λ1, · · · , λn) is a diagonal matrix.

For a given feature matrix X, its graph fourier transform is
X̂ = UTX, and the corresponding inverse fourier transform
is X = UX̂. The graph convolution between the input X
and the filter G can be expressed as

Y = X ∗G G = U
(
(UTX)� (UTG)

)
= UĜUTX, (1)

where � is the element-wise Hadamard product, and Ĝ =
g(Λ) = diag(g(λ1), · · · , g(λn)).

To meet the intention of reducing the learning complexity,
it can be predigest with K-order Chebyshev polynomials
[14], then we obtained

Y =

K−1∑
i=0

θiTi(L̂
′)X, (2)

where L̂′ = 2L̂/λmax − I, θi is the parameters to trained,
and Ti(x) can be recursively calculated with Ti(x) =
2xTi−1(x)− Ti−2(x), T0(x) = 1 and T1(x) = x.

Kipf et al. [15] present an efficient variant of convolutional
neural networks which operate directly on graphs. They made
a localized first-order approximation to (2) with: 1) use K =
1; 2) λmax = 2; and 3) θ1 = −θ0, then we acquired

Y = σ
(
D̂−

1
2 ÂD̂−

1
2 XW

)
= σ

(
L̂XW

)
, (3)

the normalized laplacian matrix L̂ prevents the values in the
feature matrix X grows too large, W is a linear transformer
matrix and σ is the activation function.

B. Forward Update Laplacian Matrix

GAT overcame the shortcomings of prior methods based
on graph convolutions or their approximations and provided
a new approach to focus on neighbor nodes relationship.
To meet the requirements of transforming the input features
into higher-level features, X is augmented by multiplying a
shared weight matrix W′ ∈ Rd×d′

, and the extended feature
matrix can be expressed as X′ = XW′ = {x′1, · · · ,x′n}.

For a pair of neighbor nodes j and i, the normalized
attention coefficient of j to i can be calculated with a shared
self-attention mechanism a ∈ R2d′

:

φij =
exp(ϑij)∑

k∈Ni
exp(ϑik)

=
exp

(
LeakyReLU(aT[x′i||x′j ])

)∑
k∈Ni

exp(LeakyReLU(aT[x′i||x′k]))
,

(4)

where aT represents the transposition of a, Ni means the
neighbor of node i and || is concatenation. Since ϑij charac-
terizes the correlation of node i and its neighborhood node j,
φij represents the normalized weight of j in all the neighbor
nodes of i.

Based on the above calculation, we get the attention-based
matrix related to the features collected by different electrodes

Φ =


φ11 · · · φ1n

...
. . .

...
φn1 · · · φnn

 , (5)

and if j is not a neighbor of i, we get φij = 0.
Since Φ in (5) contains the node weight relationships

acquired with self-attention, we believe that Φ is beneficial
to improve the representation ability of the Laplacian matrix
L̂. We introduced

L̂ = (1− η)L̂ + ηΦ (6)

to forward update L̂ before model training, where η is a
hyperparameter.

C. Backward Update Adjacency Matrix

Song et al. [10] proposed DGCNN to update the adja-
cency matrix A through a backward propagation. The partial
derivative of the loss function with respect to A can be
calculated with

∂Loss

∂A
=
∂cross entropy(y,y′)

∂L̂
· ∂L̂

∂A
+ ξ

∂||Θ||
∂A

, (7)
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Fig. 1. The framework of the proposed LR-GCN for EEG emotion recognition.

where y and y′ are the true labels and the predicted la-
bels, respectively. ξ||Θ||is the regularization to prevent over-
fitting.

Then we can update the adjacency matrix A with

A = (1− µ)A + µ
∂Loss

∂A
, (8)

where µ is the learning rate of A.

D. Dynamics of proposed LR-GCN

The diagram of the LR-GCN is shown in Fig. 1. After data
collecting, preprocessing and feature extraction, the EEG
data are converted into a 62 × 5 feature matrix X. At the
same time, the initial adjacency matrix A was constructed
through the 2D spatial electrode relationships, and then we
calculated the corresponding initial Laplacian matrix L̂. After
obtaining the feature matrix X and the graph Laplacian ma-
trix L̂, we began to perform graph convolution in (3) and got
the output of 62 × 20, followed by flattening and two layers
of full connection with results of 128 and 3 respectively,
we finally got the emotion recognition results. During the
experiment, we used LeakyReLU with a coefficient of 0.15
as the activation function and performed batch normalization
before the second full connection.

There are two paths to update the electrode relationships
during model training. One is forward updating the Laplacian
matrix based on self-attention, and the other is backward
updating the adjacency matrix based on gradient propagation.

The first is to update the Laplacian matrix with feed-
forward. Before each model training, we employed (6) to
update the Laplacian matrix L̂, so we get the Laplacian ma-
trix of electrode relationships related to the feature. During
the training process, we tried to set the value of η to 0.1,
0.3, 0.5, and finally found that the best result was obtained
when η is set to 0.5. Therefore, the value of η is fixed at 0.5
in the experiment.

The other is to update the adjacency matrix with feedback.
After calculating the gradient of the adjacency matrix A
from (7), we employed (8) to backward update A, where
the value of µ is 5e-5. Before the next epoch of training,
we recalculated the normalized Laplacian matrix with L̂ =
I−D−

1
2 AD−

1
2 .

Algorithm 1 summarizes the training procedures of the
proposed LR-GCN in EEG-based emotion recognition.

Algorithm 1 The Training Procedure of LR-GCN.
Input: X, y: EEG features associated with multiple fre-

quency bands and the corresponding labels; A: The
adjacency matrix that characterizes the initial electrode
relationship; η, µ: The learning rate for forward updat-
ing Laplacian matrix and backward updating adjacency
matrix;

Output: The learned model parameters in LR-GCN;
1: for i = 1:T do
2: repeat
3: Draw one batch of training samples;
4: Calculate the attention matrix Φ using (4) and (5);
5: Feed-forward update L̂ with

L̂ = (1− η)L̂ + ηΦ;

6: Calculate GCN using (3);
7: Calculate the results of full connection layers;
8: Feedback update the adjacency matrix using

A = (1− µ)A + µ
∂Loss

∂A

and other model parameters;
9: until The iterations satisfies the convergence condi-

tion;
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III. EXPERIMENTS AND RESULTS

In this section, we will introduce the SJTU Emotion
EEG database (SEED) [6] and reveal the subject-dependent
emotion recognition ability of our proposed LR-GCN on this
database. Furthermore, we showed that the proposed method
can obtain more reasonable electrode relationships.

A. Database

The SEED database collects three types of EEG-based
emotion data, i.e., negative, positive, and neutral when 15
subjects (7 males and 8 females) watching 15 different
movie clips, and the EEG data was recorded by a ESI
NeuroScan System with 62 electrodes. The whole database
contains 3 sessions, each session contains data of 15 different
subjects, and each subject’s data could be divided into 15
trials, which corresponds to 15 movie clips. In each trial,
there is a 5-second hint, 4 minutes of the movie clip,
45s for self-assessment, and 15s for rest. The experimental
procedures involving human subjects described in this paper
were approved by the Institutional Review Board.

B. Subject-Dependent Classification

In this experiment, we used the 2D distribution of elec-
trodes as the initial adjacency matrix: when two electrodes
are adjacent, the corresponding value in the adjacency matrix
is 1; when they are not adjacent, the value is 0. Besides,
we used the global channel pairs used in RGNN: (FP1,
FP2), (AF3, AF4), (F5, F6), (FC5, FC6), (C5, C6), (CP5,
CP6), (P5, P6), (PO5, PO6) and (O1, O2) are also set to
1 on the adjacency matrix. After that, we normalized the
initialized adjacency matrix, and obtained the corresponding
Laplacian matrix. For each feature, we select the values of
all 5 frequencies of 62 channels as its feature matrix, so
the size of the feature matrix X in the experiment is 62
× 5. In the subject-dependent experiment, among the 15
trials of the same subject in a session, the first 9 trials were
used for training and the last 6 trials were used for testing.
We evaluate the model performance by using the average
accuracy of all subjects in the EEG data of all three sessions.

TABLE I
AVERAGE ACCURACIES (%) OF DIFFERENT EEG-BASED EMOTION

RECOGNITION METHOD ON SEED DATABASE

Model Feature Frequency avg. / std. (%)
DBN[6] DE δ, θ, α, β, γ 86.08 / 8.34

DGCNN[10] PSD δ, θ, α, β, γ 81.73 / 9.94
DGCNN[10] DE δ, θ, α, β, γ 90.40 / 8.49
GCB-net[11] PSD δ, θ, α, β, γ 84.32 / 10.61
GCB-net[11] DE δ, θ, α, β, γ 94.24 / 6.70

RGNN(sota)[12] DE δ, θ, α, β, γ 94.24 / 5.95
LR-GCN without Attention DE δ, θ, α, β, γ 92.34 / 7.68

LR-GCN(ours) PSD δ, θ, α, β, γ 85.24 / 13.24
LR-GCN(ours) DE δ, θ, α, β, γ 94.72 / 5.47

We evaluated the proposed LR-GCN using two different
features, DE and PSD. The mean accuracies (avg.) and
standard deviations (std.) are shown in Table I. When we

used the DE feature for emotion recognition, the average
accuracy is 94.72%, and the standard deviation is 5.47%;
when the feature was changed to PSD, the accuracy and
standard deviation were dropped to 85.24% and 13.24%,
respectively. It shows the proposed LR-GCN can obtain the
best emotion recognition accuracy and extract more critical
features from DE features.

We also compared the performance of LR-GCN with
four popular deep learning models. Since the data division
of all models is the same: the first 9 trials were used
for training and the last 6 trials were used for testing,
the accuracy of these four models is extracted from the
corresponding papers. As the first deep learning method for
emotion recognition, DBN achieved an average accuracy of
86.08%. Compared with DBN, DGCNN has achieved great
success by introducing GCN for emotion recognition and
achieved an accuracy rate of 90.40%. By combining a broad
learning systems and GCN, GCB-net increased the accuracy
of emotion recognition to 94.24%. Combining NodeDAT
and EmotionDL, RGNN also obtained the state-of-the-art
recognition accuracy of 94.24%. Comparing the above four
models, LR-GCN improves the accuracy of emotion recogni-
tion from 94.24% to 94.72% without increasing the number
of model parameters, moreover, compared with GCB-net, the
number of parameters of the proposed LR-GCN is reduced.

Different from improving the emotion recognition accu-
racy by increasing the model complexity, LR-GCN has sig-
nificantly improved the recognition accuracy by employing
a better method to update the electrode relationships. We
added an attention structure to update the Laplacian matrix
and combined it with the original backward update adjacency
matrix, and improved the accuracy of emotion recognition
from 92.34% to 94.72% in the DE features, it showed that
the added attention structure can improve the accuracy by
2.38%.

The experimental results proved that our proposed LR-
GCN can improve the emotion recognition accuracy by
applying the attention mechanism to update the electrode
relationships. At the same time, it showed that it is a effective
method to improve the learning ability of the GCN by
optimizing the connection relationships of different nodes.

C. Electrode Relations Visualization

After the model training is completed, we visualized the
Laplacian matrix before and after training and showed it in
Fig. 2. Each arc in Fig. 2 indicates that the two connected
electrodes have a strong correlation, and the values less than
0.25 are suppressed. It can be found that after optimiza-
tion, many connections on the Laplacian matrix have been
strengthened. They are (AF3, FP1), (FP1, FPZ), (FPZ, FP2),
(FP2, AF4), (AF3, AF4), (FPZ, FZ) and (AF4, F4) located
in the frontal lobe; (FT7, T7) and (T7, TP7) located in the
left temporal lobe; (FT8, T8) and (T8, TP8) located in the
right temporal lobe, and (CB1, O1), (O1, OZ) and (OZ, O2)
located in the occipital lobe.

With the deepening of research on the human brain, the
functions of different brain regions have been continuously
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revealed. For example, the occipital lobe has been found
to have a strong relationship with human vision [16], the
temporal lobe is highly related to emotion recognition and
social cognition [17], [18], damage to the forehead may
cause emotion disorders [19]. These studies have shown that
the frontal, temporal and occipital lobes are all involved in
audiovisual inspired emotion.

In LR-GCN, the optimized Laplacian matrix significantly
strengthened the correlation of electrodes located in the
frontal, temporal and occipital lobes. It shows that during the
training process, the relationship between different electrodes
has been further optimized. At the same time, the optimized
electrode relationship further improves the accuracy of emo-
tion recognition.

(a) Chord Diagram of Laplacian
Matrix before Optimization

(b) Chord Diagram of Laplacian
Matrix after Optimization

Fig. 2. Chord diagram of Laplacian matrix depicting electrode relations
before and after training. (values less than 0.25 are suppressed).

IV. CONCLUSIONS

We proposed a model employing learnable electrode re-
lations for GCN-based EEG emotion recognition, which
combined forward updating the Laplacian matrix based on
self-attention and backward updating the adjacency ma-
trix based on gradient propagation. We conducted subject-
dependent experiments on the DE and PSD features and
achieved an average accuracy of 94.72% and 85.24% respec-
tively. Besides, ablation experiments proved the effectiveness
of using attention to update the Laplacian matrix. After
visualizing the learned Laplacian matrix, we observed a
phenomenon consistent with previous research: the frontal,
temporal and occipital lobes are highly related to audiovisual
inspired emotion. The results prove that the proposed LR-
GCN achieves the best emotion recognition by focusing on
optimizing the electrode relations. In future work, we will
focus on optimizing the method of updating the adjacency
matrix and using a deeper network to further improve the
emotion recognition ability.
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