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Abstract—People with type 1 diabetes (T1D) need exogenous 

insulin administrations several times a day. The amount of 

injected insulin is key for maintaining the concentration of blood 

glucose (BG) within a physiological safe range. According to 

well-established clinical guidelines, insulin dosing at mealtime is 

calculated through an empirical formula which, however, does 

not take advantage of the knowledge of BG trend provided in 

real-time by continuous glucose monitoring (CGM) sensors. To 

overcome suboptimal insulin dosage, we recently used machine 

learning techniques to build two new models, one linear and one 

nonlinear, which incorporate BG trend information.  

In this work, we propose an ensemble learning method for 

mealtime insulin bolus estimation based on dynamic voting, 

which combines the two models by taking advantage of where 

each alternative performs better. Being the resulting model 

black-box, a tool that enables its interpretability was applied to 

evaluate the contribution of each feature. The proposed model 

was trained using a synthetic dataset having information on 100 

virtual subjects with different mealtime conditions, and its 

performance was evaluated within a simulated environment.  

The benefit given by the ensemble method compared to the 

single models was confirmed by the high time within the target 

glycemic range, and the trade-off reached in terms of time spent 

below and above this range. Moreover, the model interpretation 

pointed out the key role played by the information on BG 

dynamics in the estimation of insulin dosage.  

 
Clinical Relevance— The proposed approach provides an 

effective and safe rule for the computation of mealtime insulin 

dosage in T1D management. 

 

 

I. INTRODUCTION 

Type 1 diabetes (T1D) is an autoimmune disease which 
consists of pancreatic beta-cells not producing insulin [1], thus 
resulting in high blood glucose (BG) concentration. As a 
consequence, people with T1D need to administer multiple 
boluses of insulin exogenously to counteract this condition. On 
the other hand, overdosage of exogenous insulin leads to 
hypoglycemia (BG < 70 mg/dL) [2]. As such, to maintain the 
BG level within the target range (70 ≤ BG ≤ 180 mg/dL), the 
precise estimation of the insulin bolus (IB) is crucial. 
Typically, this quantity is calculated through a standard 
formula (SF) [3]: 

 IBSF = 
CHO

CR
+

Gc-Gt

CF
-IOB (1) 
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where IBSF (U) is the total IB amount, CHO (g) is the meal 
carbohydrates intake, CR (g/U) is the insulin-to-carbohydrates 
ratio [4], Gc (mg/dL) is the current BG concentration, usually 
obtained by self-monitoring fingerprick devices, Gt (mg/dL) is 
the target BG, CF (mg/dL/U) is the correction factor [4], and 
IOB (U) is the so-called insulin-on-board, i.e., an estimate of 
the amount of insulin still acting on the body from previous 
administrations [5]. 

Though well established in clinical practices, the formula of 
Eq.(1) does not take into account glucose dynamics, e.g., the 

BG derivative (𝐵𝐺̇), an information accessible through the use 
of modern devices, the so-called minimally-invasive 
continuous glucose monitoring (CGM) sensors, which are 

revolutionizing T1D management [6], [7]. Intuitively, if 𝐵𝐺̇ at 
mealtime is positive/negative the IB dosing should be 
increased/decreased accordingly. Hence, the aim being 

optimizing IB calculation by accounting for 𝐵𝐺̇, we recently 
proposed two new modeling approaches [8], [9], one linear 
and one nonlinear, that proved to outperform the SF in silico. 
However, a further margin of improvement may come from 
merging these two techniques in a single one, thus developing 
an ensemble model. Indeed, the different outputs can be 
combined by applying a specific model within the “local 
region” where the regression error is the lowest, thus taking 
advantage that each model produces better results inside 
certain subareas of the application domain.  

Following this rationale, in this work, we merged [8], [9] to 
build an ensemble learning method based on dynamic voting 
(DV) [10], i.e., the final prediction is derived by weighting the 
two outputs according to the local performance, with the aim 
of developing a more effective model for the estimation of the 
optimal IB dose. The proposed methodology led to satisfactory 
results in silico, suggesting that a further investigation in this 
direction is needed. In addition, the model interpretation using 
SHapley Additive exPlanations (SHAP), i.e., a novel tool to 

interpret model predictions, confirmed the importance of 𝐵𝐺̇ 
within the model, proving that the BG dynamic is a valuable 
information for IB optimization. 

 

II. DATASET 

A. Simulated dataset generation 

Learning and assessment of the methodology were 
performed by generating synthetic data of 100 virtual adult 
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subjects using the UVa/Padova T1D Simulator [11]. The 
virtual population underwent multiple single-meal scenarios in 
a noise-free environment, i.e., error sources for the CHO 

counting, BG measurement, and 𝐵𝐺̇ estimation were not taken 
into account. Moreover, no corrective actions such as CHO 
intakes or correction IB were allowed during the postprandial 
window. This experimental set-up was chosen to avoid any 
confounders, which could have influenced our study.  

Each single-meal simulation had a duration of 12 hours, in 
which the first 6 hours were used to obtain the specific 

mealtime conditions in terms of BG and 𝐵𝐺̇. Particularly, we 
brought each virtual subject to prandial BG levels taking 
values between 70 and 180 mg/dL with a step of 10 mg/dL, 

and 𝐵𝐺̇ from -2 to +2 mg/dL/min with a step of 0.5 
mg/dL/min. Then, we set for each subject and prandial 
condition a different amount of meals, ranging between 10 and 
150 grams of CHO, with step of 10 g. Finally, we computed 
the optimal IB (IBOPT), i.e., the target of our learning 
algorithm, by minimizing the blood glucose risk index (BGRI) 
[12] within the 6 hours postprandial window.  

After this procedure, we extracted 10 features related both 

to the mealtime condition (Gc, CHO, 𝐵𝐺̇, IOB, SF, basal 

insulin (Ib)) and the physiology of the virtual subject (CR, CF, 

Gt, body weight (BW)). Then, the whole dataset was divided 

into a training and test set with a 4:1 ratio, in a way that the 

records related to the same virtual subject belongs or to the 

training or to the test set, to provide an unbiased evaluation. 

Moreover, the variables were preprocessed by removing the 

mean and scaling to unit variance. 

 

III. METHODS 

A. Models composing the ensemble 

We selected as base regressors, i.e., as models that 

composed the ensemble, the least absolute shrinkage and 

selection operator (LASSO) model [8] and the random forest 

(RF) model [9]. The LASSO model allows both variable 

selection and regularization, by adding a penalty term to the 

loss function. On the other hand, the RF model, i.e., a learning 

method based on an ensemble of decision trees, is focused on 

capturing nonlinear connections between the features. 

 

B. Ensemble method implementation 

The ensemble method is mainly based on the DV algorithm 

described in [10], where multiple regressors are combined 

together using local performance estimates to generate the 

final prediction. In particular, the algorithm is divided into 

two different phases, described below. 

 

Learning phase. First, the hyperparameters of LASSO and 

RF were optimized in a cross-validation setup by performing 

an exhaustive search over a fixed grid of parameter values. 

Then, we computed the estimation error for each data record 

(EER) and each base learner in the training set, in another 

cross-validation setup, as: 

 
 EER = | 𝐼𝐵̂lr - 𝐼𝐵OPTr | (2) 

where 𝐼𝐵̂lr is the output obtained from the l-th learner (fitted 
on the k-1 training folds of the cross-validation setup) applied 
to the r-th record of the k-th validation fold, and 𝐼𝐵OPTr is the 
IBOPT related to the r-th record. Finally, the two base learners, 
having the optimal hyperparameters previously determined, 
were trained using the whole training set. 

Application phase. The model trained in the previous phase 

is applied as follows. For each input record of the test set, 

similar data through the training records were searched using 

the k-nearest neighbors (k-NN) method, to define its local 

region. The similarity measure is based on the weighted 

Euclidean distance, in which weights are derived from the 

application of RReliefF (RRF) algorithm to the dataset [13] , 

[14]. This procedure was performed to differently weigh the 

variables, being some features more relevant than others for 

the definition of the local subspace, i.e., more related to the 

target variable. Hence, after having defined the local subarea, 

for each base learner we predicted the 𝐸𝐸̂R of the test record 

by averaging the EER of the nearest neighbors. Once the 𝐸𝐸̂R 

of both LASSO and RF was derived, the final output was 

computed by weighting more the prediction of the best 

performing model than the other, according to 𝐸𝐸̂R. In 

particular, the prediction related to the model with the best 

outcome within the local region was weighted three times 

more than the one having the lowest performance. 

 

IV. MODEL EVALUATION 

A. Quantification of model performance 

We evaluated the efficacy of the ensemble on the test set, 

both in terms of regression metrics, i.e., root mean squared 

error (RMSE) and mean absolute error (MAE), and within the 

simulated environment, where the estimated IB was applied 

as mealtime insulin amount. Then, we computed popular 

metrics related to glycemic control over the 6 hours 

postprandial window [15]: the BGRI, the percentage of time 

spent within the target BG range (70 ≤ BG ≤ 180 mg/dL), the 

time above this range and below this range, hereafter named 

as %TIR, %TAR and %TBR respectively. In addition, the 

assessment was performed for the single base learners 

(LASSO and RF), to verify the benefit resulting from the 

usage of the ensemble compared to the single models. Finally, 

as a reference, we included the SF and OPT within the in 

silico evaluation. 

B. Model interpretation 

Interpretability of machine learning models is a relevant 

feature, especially when dealing with a clinical application. 

However, interpretation of complex nonlinear models is far 

from trivial, and the use of ad-hoc interpretability methods is 

needed. Therefore, in this work, we applied the SHAP tool 

[16], i.e., a novel game theoretic approach to explain how 

much a given feature impacts on model prediction in 

comparison to the prediction obtained if that feature took 

some baseline value.  
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TABLE I. COMPARISON OF THE METRICS OBTAINED FROM THE IN SILICO EVALUATION FOR SF, LASSO, RF, DV AND OPT. MEDIAN AND INTERQUARTILE 

RANGES ARE REPORTED FOR TAR, TIR AND TBR [%] AND BGRI. 

 SF LASSO RF DV OPT 

TAR [%] 29.09 
[13.30-37.95] 

29.92 
[11.91-39.06] 

30.19 
[12.19-40.17] 

29.92 
[11.91-39.33] 

29.92 
[12.18-39.33] 

TIR [%] 
60.11 

[38.23-78.12] 

64.54 

[48.20-79.22] 

65.65 

[52.35-81.16] 

65.65 

[51.52-80.89] 

68.14 

[59.00-82.27] 

TBR [%] 
0 

[0-28.53] 
0 

[0-13.57] 
0 

[0-3.04] 
0 

[0-6.09] 
0 

[0-0] 

BGRI 
9.93 

[4.85-17.46] 

9.09 

[4.68-15.44] 

8.81 

[4.34-14.96] 

8.79 

[4.40-14.93] 

8.23 

[3.98-14.03] 

 

V. RESULTS AND DISCUSSION 

A. Goodness of fit 

The ensemble method led to an improvement compared to 
the single models in terms of regression metrics. In particular, 
the RMSE and MAE resulted 0.87 U, 0.90 U and 0.62 U, 0.60 
U for the base regressors LASSO and RF, respectively, while 
the DV method produced a RMSE of 0.84 U and a MAE of 
0.56 U. Moreover, we found out that the most important 
subdomain that allows differentiating the performance of the 
base learners is given by SF. Indeed, within the local 
subdomain defined from medium SF values (from 8 to 15 U), 
the LASSO model produced better results compared to RF, 
while the latter model outperformed LASSO at the extremities 
of SF domain. The DV approach allowed the combination of 
the positive contributions of LASSO and RF, improving the 
outcome. 

B. Assessment of the methodology in terms of glucose 

control 

 A representative simulated scenario related to the use of 

SF, DV, and OPT is shown in Fig. 1, in which the 

hyperglycemic event caused by SF is considerably reduced 

with the application of DV, approaching the optimal control. 
Table I reports the median and interquartile ranges of the 
distributions of TIR%, TAR% and TBR% for each considered 
method. Compared to SF, LASSO, RF, and DV improved 
glucose control. In particular, resulting %TIR is 60.1, 64.5, 
65.6, and 65.6 respectively.  

Furthermore, comparing LASSO with RF, the former 
resulted in a lower median %TAR, while, conversely, the latter 
outperformed LASSO in terms of %TBR, reaching a 75th of 
about 3% against 13.6%.  Focusing on the results obtained 
using DV, it allowed to maintain a high postprandial %TIR, 
while reaching a trade-off in terms of %TAR and %TBR. This 
result was achieved thanks to the ability of the ensemble 
approach to select as major contributor for the final outcome 
the base learner having better performance within specific 
local domains.  

C. Model interpretation 

The plot in Fig. 2 reports the application of SHAP to the 
DV model. In particular, information on both feature 
importance and feature effect on the outcome are shown. Each 
dot of the plot represents the impact on model outcome for a 
given feature and record of the dataset, and has three 
characteristics: the color, the vertical and the horizontal 
location. The different colors represent the magnitude of the 

feature value (from low, in blue, to high, in red). The vertical 
location shows the feature importance, indeed the features are 
ranked in descending order based on their effect on the model 
prediction, while the horizontal location reports whether the 
impact of that value caused a higher or lower prediction. The 
most important feature resulted SF, in accordance with the 

results obtained in subsection V.A, followed by 𝐵𝐺̇, and CHO, 
which provided a positive contribution to the model outcome. 
Instead, lower values of CR, IOB and CF led to higher IB 
amounts, in accordance with the physiological meaning of 
these variables, unlike BW and Gt, that should have an 
opposite impact on the model output with respect to the one 
obtained in Fig. 2. The interpretability issue with BW and Gt 
variables was already encountered in our previous work [8], 
where the BW and Gt coefficients of the linear model were not 
in line with the physiological interpretation of these features. 
As explained in [8], this result may be due to the non-zero 
correlation among some variables of the dataset. 

 

VI. CONCLUSION 

In this work, we developed an ensemble learning method 

based on dynamic voting with the aim of optimizing the 

mealtime IB in T1D therapy, thus preventing possible adverse 

glycemic events, such as hypo/hyperglycemia, due to an 

over/underestimation of IB amount. The proposed method 

was tested in a simulated environment, producing positive 

results in terms of trade-off between %TAR and %TBR, 

 
Fig. 1: Representative BG curves during the postprandial time window 
for different methods of insulin bolus computation (SF in black, DV in 

red and OPT in blue). Dashed lines indicated the target glycemic range. 
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while keeping a high median %TIR.  

Preliminary results showed the ability of the proposed 

model to combine the linear and nonlinear model of [8], [9] 

based on each individual regressor’s local performance within 

a specific subdomain. Moreover, the model interpretation 

using SHAP confirmed the importance of information related 

to the glucose dynamics (𝐵𝐺̇) within the model. 

Limitations of the study are represented by the use of a 

synthetic dataset, which did not take into account 

confounding factors, such as error sources. 

Further development of this work will include the 

assessment of the methodology in a multi-meal scenario [17], 

with the addition of variability and multiple sources of error, 

such as CGM measurement error [18], [19] and CHO 

counting error [20]. Moreover, future works will include the 

evaluation of the method using real data by leveraging a 

recently proposed in-silico framework to retrospectively 

assess new therapy guidelines for T1D management [21]. 
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Fig. 2: Results of the interpretation of the DV model. Each point on the 
plot represents the impact on model output for a feature and a record of 

the dataset. The features are reported in descending order based on their 

importance within the model. Different colors of the points represent 

high/low feature values. 
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