
  

  

Abstract—Management of type 1 diabetes (T1D) requires 
affected individuals to perform multiple daily actions to keep 
their blood glucose levels within the safe rage and avoid adverse 
hypo-/hyperglycemic episodes. Decision support systems (DSS) 
for T1D are composite tools that implement multiple software 
modules aiming to ease such a burden and to improve glucose 
control. At the University of Padova, we are developing a new 
DSS that currently integrate a smart insulin bolus calculator for 
optimal insulin dosing and a rescue carbohydrate intake advisor 
to tackle hypoglycemia. However, a module specifically targeting 
hyperglycemia, that suggests the administration of corrective 
insulin boluses (CIB), is still missing. For such a scope, this work 
aims to assess a recent literature methodology, proposed by 
Aleppo et al., which provides a simple strategy for dealing with 
hyperglycemia. The methodology is tested retrospectively on 
clinical data of individuals with T1D. In particular, here we 
leveraged a novel in silico tool that first identifies a non-linear 
model of glucose-insulin dynamics on data, then uses such model 
to simulate and compare the glucose trace obtained by 
“replaying” the recorded scenario and the glucose trace 
obtained using the CIB delivery strategy under evaluation. 
Results show that the CIB delivery strategy significantly reduce 
the percentage of time spent in hyperglycemia (-15.63%) without 
inducing any hypoglycemic episode, demonstrating both safety 
and efficacy of its use. These preliminary results suggest that the 
CIB delivery strategy proposed by Aleppo et al. is a promising 
candidate to be included in our system to counteract 
hyperglycemia. Future work will extensively evaluate the 
methodology and will compare it against other competing 
approaches. 
 

Clinical Relevance—This work shows that the literature 
methodology for correction insulin bolus delivery proposed by 
Aleppo et al. is a promising approach to mitigate hyperglycemia. 

I. INTRODUCTION 

Type 1 diabetes (T1D) is a chronic autoimmune disease 
characterized by the lack of insulin production in the pancreas 
and the consequent inability to keep the blood glucose (BG) 
concentration within the safe range, i.e., BG ∈ [70, 180] mg/dl 
[1]. Standard T1D therapy consists of multiple daily 
injections of exogenous insulin boluses administered in an 
“open-loop” fashion to compensate BG fluctuations due to 
meal intakes, and tuned according to diet, subject physiology, 
and current BG concentration measured using fingerprick 
self-monitoring devices (SMBG) [2]. 
In the last decades, new technologies for diabetes, such as 
minimally invasive continuous glucose monitoring (CGM) 
sensors [3], allowed to partially relieve the burden of T1D 
management and to improve glycemic control. Additionally, 
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CGM sensors provide dynamical information on BG 
fluctuations and in particular its derivative (Gder), which can 
be exploited to develop new tools to support the patients’ 
decision-making process. Following this rationale, new 
CGM-based algorithms have been recently proposed in the 
literature demonstrating to be successful in improving glucose 
control [4]. A particularly appealing possibility consists of 
merging these methodologies in a decision support system 
(DSS) [5], i.e., composite software tool that offer multiple 
functionalities to assist individuals in managing T1D by 
automatically analyzing data and providing personalized 
recommendations about the therapy.  

Recently, our research group at the University of Padova 
started the development of a new DSS, namely the Padova 
Decision Support System (PDSS) [6]. To date, it incorporates 
two Gder-based state-of-the-art algorithms, i.e., a personalized 
insulin bolus calculator, which aims at providing optimal 
insulin dosing at mealtime [7], and a smart rescue 
carbohydrate intake advisor to counteract the shortcoming of 
dangerous hypoglycemic events (i.e., BG < 70 mg/dl) [8].  

A current missing feature of PDSS is the ability of targeting 
prolonged postprandial hyperglycemia, i.e., BG > 180 mg/dl, 
by providing patients with a smart correction insulin bolus 
(CIB) delivery strategy.  

For this reason, the aim being equipping PDSS with such a 
feature, in this work we assessed a Gder-based literature 
algorithm for its possible integration within the system.  The 
methodology is assessed leveraging a novel in-silico 
framework [9] that allows retrospectively modifying data 
acquired in people with T1D. Obtained results are promising 
and suggest the potential integration of the methodology in 
the PDSS.  

II. A LITERATURE ALGORITHM TO GENERATE CORRECTION 
INSULIN BOLUSES BASED ON GDER 

A. The standard correction insulin bolus delivery strategy 
Standard T1D therapy contains suggestions on how to 

administer one or more CIB to tackle prolonged postprandial 
hyperglycemic events, with the aim of lowering BG and get it 
back in the safe range. However, CIB delivery is not unique, 
and practitioners’ recommendations may differ both in terms 
of CIB dosing and timing [10]. 

Regarding CIB dosing, as a general rule of thumb, it can be 
obtained using the following simple formula [11]: 
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CIB	=	 GC-GT
CF

	-	IOB        (1)  
 
where GC (mg/dl) is the current BG concentration, provided 

by CGM, GT (mg/dl) is the patient target BG level, CF 
(mg/dl/U) is the correction factor, a patient-specific therapy 
parameter usually tuned by physician to accommodate the 
peculiar patient physiology, and IOB (U) is the so-called 
insulin-on-board, i.e., an estimate of the amount of exogenous 
insulin that has been previously assumed by the patient but 
that has not been assimilated by the organism yet. 

As far as CIB delivery timing is concerned, at the best of 
our knowledge, there are no fixed rules. However, a generally 
accepted indication is to wait at least 2 hours after a mealtime 
bolus before taking any corrective actions, since additional 
administrations of insulin in that time-window can often 
result in a subsequent hypoglycemia due to the high IOB. 

A clear issue with the standard CIB delivery strategy is that 
it does not account for BG dynamics. To stress this aspect, let 
us consider the following representative situation. Two hours 
after a mealtime insulin bolus, a patient’s BG is 200 mg/dl 
while his Gder is -2 mg/dl/min. Standard insulin therapy would 
suggest that in this scenario, a CIB should be delivered. 
However, it is intuitive to state that patient probably does not 
require such a CIB since Gder indicates that BG is rapidly 
falling, thus getting back to the safe range without requiring 
any additional corrective, and potentially dangerous, actions.  

B. The Aleppo’s methodology for CIB delivery 
The aim being formulating a CIB delivery strategy able to 

account for Gder information, Aleppo et al. [12], proposed a 
simple heuristic based on their clinical experience. This 

strategy follows a precise scheme (reported in Fig. 1), which 
defines both CIB timing and dosing.  

In details, to control postprandial BG after a meal, patients 
are required to wait two hours, and then check BG 
concentration and Gder values using CGM, and finally take 
one of these two actions: 

• If more than 4 hours have passed since the last meal, 
BG > 180 mg/dl, and more than 2 hours have passed 
since the last bolus, take a CIB computed as: 

 
CIB*	=	CIB	+	f(CF,	Gder)        (2) 
 

where f(⋅) (U) is a deterministic function depending 
on CF and Gder (see Table I for the detail on f(⋅) given 
CF and Gder);  

• If less than 4 hours have passed since the last meal, 
if BG > 150 mg/dl, Gder > 1 mg/dl/min, and more 
than 2 hours have passed since the last bolus, or BG 
> 250 mg/dl, Gder > 2 mg/dl/min, and more than 1 
hour has passed since the last bolus, take a CIB 
computed using (1) and wait 1 hour before checking 
CGM again. 

 
 

TABLE I.  F(⋅) VALUES GIVEN CF AND GDER 

Gder (mg/dl/min) CF (mg/dl/U) f(⋅) (U) 

> 3 

< 25 
25 – 50 
50 – 75 

> 75 

+ 4.5 
+ 3.5 
+ 2.5 
+ 1.5 

2 – 3  
 

< 25 
25 – 50 
50 – 75 

> 75 

+ 3.5 
+ 2.5 
+ 1.5 
+ 1.0 

1 – 2  

< 25 
25 – 50 
50 – 75 

> 75 

+ 2.5 
+ 1.5 
+ 1.0 
+ 0.5 

-1 – 1  

< 25 
25 – 50 
50 – 75 

> 75 

0 

-2 – -1  

< 25 
25 – 50 
50 – 75 

> 75 

- 2.5 
- 1.5 
- 1.0 
- 0.5 

-3 – -2  

< 25 
25 – 50 
50 – 75 

> 75 

- 3.5 
- 2.5 
- 1.5 
- 1.0 

< -3 

< 25 
25 – 50 
50 – 75 

> 75 

- 4.5 
- 3.5 
- 2.5 
- 1.5 

 

III. ASSESSMENT OF THE METHODOLOGY 

A. Dataset  
The assessment of the methodology was performed on data 

collected during a randomized crossover trial in patients with 
T1D [13]. In details, data were collected over a 2-month 
period where patients were randomized either to 2 months of 

 
Figure 1. CIB delivery strategy as defined by Aleppo et al. 
[12]. BG stands for blood glucose, Gder stands for BG 
derivative, CGM stands for continuous glucose monitoring, 
CIB stands for correction insulin bolus. 
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closed-loop therapy, using an artificial pancreas, from dinner 
to waking up, plus open-loop therapy during the day, or to 2 
months of all-day open-loop therapy. The study was done in 
accordance with the Declaration of Helsinki and was 
approved by the institutional ethics review board at each site. 
All patients provided verbal and written informed consent. 

Being the methodology under assessment targeting patients 
undergoing the open-loop therapy, we used only data 
collected during the all-day open-loop phase. From these data, 
we extracted the meal and related postprandial intervals 
lasting 8 hours. Then, in order to minimize the sources of 
variability and bias, we discarded those intervals containing 
rescue carbohydrate intakes or correction boluses. Finally, we 
retained only those intervals that presented, at least, one 
hyperglycemic event. 

The resulting dataset consisted of 77, 8-hours long, portions 
of data each containing the information on meal intake, 
exogenous insulin infusion, and CGM measurements.  

B. In silico framework and assessment criteria 
In order to evaluate the CIB delivery strategy of Aleppo et 

al. on already acquired data, we resorted to a model-based 
methodology [9]. This approach consisted of two main 
phases: in the first phase, a model of glucose-insulin 
regulation in T1D population, whose inputs are carbohydrate 
intakes and exogenous insulin, and the output is the BG trace, 
was identified for each selected portion of data. Then, the 
identified model was used to simulate the postprandial 
glucose concentration that would have been obtained by 
adopting the CIB delivery strategy under examination. 

Briefly, the identified model core was the Bergman et al. 
[14] minimal one, which describes the impact of plasma 
insulin action on plasma glucose. The model has been 
expanded by adding a model of subcutaneous insulin infusion 
[15], to describe how exogenous insulin diffuses to plasma, 
and a model of oral glucose assumption, to describe the 
impact of meal carbohydrate intakes on BG [16]. Then, the 
model was fitted on data in a Bayesian setup using Markov 
Chain Monte Carlo, avoiding any undesired non-
identifiability issues, to obtain a point estimate of unknown 
model parameters. Details on the identification setup as well 
as model equations can be found in [9].  

For each of the 77 portions of data, we designed two 8-hours 
long in-silico experiments. In the first scenario (scenario A), 
we simulated the BG trace obtained using the actual insulin 
input as reported in the data, thus without any CIB delivery. 
In the second scenario (scenario B), we simulated the BG 
trace resulting from the adoption of [12].   

Finally, we quantified glycemic control in scenario A and B 
in terms of percentage of time that the BG trace spent in 
hyperglycemia (THyper), hypoglycemia (THypo), and in the safe 
target range (TTarget), i.e., three metrics that are widely used 
for such a purpose [17]. Difference between scenario A and 
scenario B was considered statistically significant according 
to the rank sum test with a 5% significance level.  

IV. RESULTS 
Fig. 2 presents an example of BG traces obtained in 

scenario A and scenario B in a representative subject. Top 

panel reports the actual CGM data (in red), the BG profile 
resulting from the application of the original input data (in 
black), and the BG trace obtained using the original input data 
but with the addition of a correction bolus as suggested by the 
Aleppo et al. algorithm (in blue). It can be appreciated that, 
by administering a CIB of 2.67 U when patient’s BG reach 
the hyperglycemic threshold at around 1:00 AM, it is possible 
to strongly mitigate the post-dinner hyperglycemic event 
without inducing any dangerous hypoglycemic event. In 
particular, resulting THyper, and TTarget in scenario A and 
scenario B are 59.38% vs. 84.38%, 40.62% vs. 15.62%. 

In Table II, we report the distributions of THypo, THyper, and 
TTarget in terms of median and interquartile range obtained in 
scenario A and scenario B for all considered portions of data. 
Considering THyper, the algorithm allows to significantly 
improve (p < 0.05) the glycemic outcomes through the 
population. In details, average ΔTHyper = THyper(scenario B) - 
THyper(scenario A) is -15.63%. Moreover, it can be noticed 
that no hypoglycemic episodes are induced by the algorithm 
being THypo 0.00% in both scenarios. Finally, TTarget 
significantly improved by ΔTTarget = 12.50%. 

TABLE II.  OVERALL RESULTS  

Scenario THypo (%) THyper (%) TTarget (%) 

A 0.00 
[0.00, 0.00] 

48.96 
[45.83, 49.68] 

51.04 
[50.00, 52.35] 

B 0.00 
[0.00, 0.00] 

33.33 
[31.25, 36.25] 

63.54 
[62.40, 65.58] 

p-value 1.00 < 0.05 < 0.05 

V. CONCLUSIONS 
DSS for T1D, such as the one that we are developing at the 

University of Padova, are tools able to proactively help 
patients in managing the therapy and its daily burden. In this 

 
Figure 2. Example of BG traces obtained in in a representative 
subject. In the top panel, the CGM data (dotted red line) and the 
respective BG profiles obtained in scenario A (dotted black 
line) and scenario B (dotted blue line). In the center panel, the 
CHO data (violet stem). In the bottom panel, the insulin data 
(basal in solid black line, bolus in green stem) and the CIB 
generated by [12] (in black stem).  

1834



  

work, we focused on the possibility of integrating into PDSS 
a new module that targets hyperglycemia by recommending 
the administration of CIB. To do so, we evaluated a literature 
strategy for CIB delivery, recently proposed by Aleppo et al., 
that leverages the information on BG dynamics, and its Gder. 
By mean of a novel in-silico framework, we validated the 
algorithm on retrospective data of real subjects with T1D. 
 The preliminary validation of the methodology showed that 
the CIB strategy of [12] is a simple yet promising one. In 
particular, the obtained results indicated that the methodology 
was effective in mitigating post-prandial hyperglycemia in the 
considered scenarios. Moreover, the additional infused 
exogenous insulin did not induce any hypoglycemic episode, 
demonstrating the safety of the approach. For these reasons, 
we can conclude that [12] is a particularly promising 
candidate methodology to be included in a potential new 
PDSS module for hyperglycemic treatment.  

However, further work is still necessary to offer a robust 
validation. In fact, in this setup, statistically significant 
improvements do not mean that there is a correspondent 
clinically relevant difference. This will start by performing 
the same validation strategy we proposed in this work on 
other clinical datasets using the same retrospective 
assessment methodology, to evaluate how much the results 
we obtained can be generalized. The validation will furtherly 
focus on an extensive comparison of the CIB delivery strategy 
of [12] against other methodologies available in the literature, 
such as [18] and [19]. This step will allow identifying the best 
approach for the scope and evidence possible margins of 
improvements.  

Future work will also deal with the tuning and refinement 
of the best identified methodology. First, it will be tweaked 
by replacing the current BG concentration in (1) and (2), i.e., 
GC, with the estimated future BG level provided by state-of-
the-art glucose prediction algorithms [20]. Then, we will 
explore the possibility of leveraging machine learning to 
personalize the whole approach in order to fit the patient-
specific physiology [21]. Finally, we will assess in silico 
how this methodology will cope with the other modules of 
the PDSS, and ultimately validate the whole system by mean 
of an ad-hoc clinical trial. 
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