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Abstract— The electromyography (EMG) signals have been
widely utilized in human–robot interaction for extracting user
hand/arm motion instructions. A major challenge of the on-
line interaction with robots is the reliable EMG recognition
from real-time data. However, previous studies mainly focused
on using steady-state EMG signals with a small number of
grasp patterns to implement classification algorithms, which is
insufficient to generate robust control regarding the dynamic
muscular activity variation in practice. Introducing more EMG
variability during training and validation could implement a
better dynamic-motion detection, but only limited research
focused on such grasp-movement identification, and all of
those assessments on the non-static EMG classification require
supervised ground-truth label of the movement status. In this
study, we propose a framework for classifying EMG signals
generated from continuous grasp movements with variations
on dynamic arm/hand postures, using an unsupervised motion
status segmentation method. We collected data from large
gesture vocabularies with multiple dynamic motion phases to
encode the transitions from one intent to another based on
common sequences of the grasp movements. Two classifiers were
constructed for identifying the motion-phase label and grasp-
type label, where the dynamic motion phases were segmented
and labeled in an unsupervised manner. The proposed frame-
work was evaluated in real-time with the accuracy variation
over time presented, which was shown to be efficient due to the
high degree of freedom of the EMG data.

Index Terms— electromyography (EMG) signals, dynamic
EMG, online grasp recognition, time-series segmentation, ma-
chine learning

I. INTRODUCTION

Human–robot interaction (HRI) technology is developed
rapidly in recent years and enables growing collaborative
robotics market. An intuitive interface for including human
into the robotic control loop is the activity detection of hand
and arm [1], which does not require users to have profes-
sional technical skills in robot control. The electromyography
(EMG) signals have been widely utilized in extracting such
hand/arm motion instructions, since the EMG signal can be
non-invasively recorded from the skin surface and represent
the electrical activity in the muscles. Different EMG-based
robotic systems were proposed for estimating the hand
and arm movements, shown to be efficient for controlling
prosthetic devices [2–4], driving virtual hands in computer
animation [5], and remotely operating robotic arms [3].

A major challenge of the online interaction with robots
is the continuous and reliable recognition of EMG from
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real-time data streams. Previous studies mainly focused on
exploiting a mapping between upper limb EMG signals
and hand postures [2–8], as strategy to control the large
number of the hand’s degrees of freedom. However, in these
approaches only steady-state EMG signals were used to train
and validate their classification algorithms, which cannot
ensure the model robustness since the muscular activity
varies between a static and a dynamic arm position, and
the hand configuration also changes simultaneously with
the arm’s motion [9]. Moreover, those studies have only
considered a small number of grasp patterns, which are
insufficient to generate differentiated control of various ap-
plication scenarios. To improve the control effectiveness and
user comfort, human intention should be detected in a more
dynamic, natural and smooth manner.

Introducing more EMG variability into the model training
and validation could be a feasible solution to obtain a robust
online classification [10], which can improve the system ap-
plicability using the dynamic phases of transient EMG [11].
Moreover, the hand motions are always performed in concert
with the arm dynamic movements - such as, during the reach-
to-grasp and grasp-to-return movements, the configuration
of the fingers and wrist changes simultaneously and contin-
uously with the arm’s motion according to the shape and
distance of the target object [12]. Therefore, models which
can identify dynamic arm postures and varying muscular
contractions could provide sufficient response time for pre-
shaping the robot, and consequently improve the system
usability and natural transition of grasp movement. However,
only limited research focused on the detection of dynamic
grasp motions [13–16], and all of those assessments on
the non-static EMG classification require supervised ground-
truth label of the movement status.

In this study, we propose a framework for classifying dy-
namic EMG signals generated from continuous grasp move-
ments with variations on multiscale muscular contractions
and dynamic arm/hand postures, using an unsupervised mo-
tion status segmentation method. We exploit the continuity
of the hand formation change during the reach-to-grasp and
grasp-to-return movements to increase the data variability,
and decode the grasping intention of the subject in a real-
time manner. We collected data from large vocabularies of
gestures with multiple dynamic motion phases to encode the
transitions from one intent to another based on common
sequences of the grasp movements. Two classifiers were
constructed for identifying the motion-phase label and grasp-
type label in parallel, where the dynamic motion phases were
segmented and labeled using an unsupervised method [17]

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 359



with no ground-truth annotation of continuous movements
required. The proposed dynamic-EMG identification frame-
work was evaluated in real-time with the accuracy variation
over time presented, which was shown to be efficient due
to the high degree of freedom of the EMG data, so that
a smarter active assistance and more intuitive interactions
between human and machine could be implemented by the
EMG-based system.

II. MATERIALS AND METHODS

A. Experimental Protocol and Data Collection

The utilized data [18] was collected from 5 healthy sub-
jects (4 male and 1 female) with an average age of 26.7±3.5
years. None of the participating subjects acknowledged any
known motor or psychological disorders. The subjects were
all right-handed and they used only their dominant hand
throughout the experiments. Prior to each collection session,
the experimental procedures and instructions were fully
explained to each of the participants and their consents were
taken for their participation .

1) EMG Sensor Configurations: Surface EMG from C =
12 muscles were recorded for each subject, covering from
hand to arm: intrinsic hand muscles (First Dorsal In-
terosseous - FDI, Abductor Pollicis Brevis - APB, Flexor
Digiti Minimi - FDM), extrinsic hand muscles (Extensor
Indicis - EI, Extensor Digitorum Communis - EDC, Flexor
Digitorum Superficialis - FDS, Extensor Carpi Radialis -
ECR, Extensor Carpi Ulnaris - ECU, Flexor Carpi Ulnaris
- FCU), as well as upper arm muscles (Brachioradialis -
BRD, Biceps Brachii Long Head - BIC, and Triceps Brachii
Lateral Head - TRI). To palpate each of the aforementioned
muscles, the experimenter followed a manual based on
SENIAM recommendations [19]. After skin preparations,
bipolar electrodes of Motion Lab Systems (Baton Rouge,
LA, USA) were attached to each muscle, and the EMG was
recorded with a sampling rate of f = 1562.5 Hz.

2) Experimental Protocol: The experimental protocol fo-
cused on 14 grasp types and 4 dynamic motion phases
involving commonly used hand and wrist motions [20]. As
shown in Fig.1, the 14 classes were: large diameter, small
diameter, medium wrap, parallel extension, distal, tip pinch,
precision disk, precision sphere, fixed hook, palmar, lateral,
lateral tripod, writing tripod, and open palm/rest. During each
grasp task, the subject was required to complete 4 dynamic
movement actions continuously including reaching (reaching
the object), grasping (grasping to move the object), returning
(returning hand to the rest position), and resting (resting at
the rest position with open palm).

Each subject participated in two collection sessions in
total, involving the task to lift and move different objects
from one position to the another, where in the first session the
object was moved in a clockwise trajectory while the second
session was in counterclockwise. The subject was allowed to
rest for fifteen minutes between the two sessions. During the
session, each one of the first 13 grasp types shown in Fig.1
(not including the open-palm/rest gesture) was performed
four times with four different objects, leading to 52 objects

Fig. 1. Selected 14 grasp types for the classification problem.

totally in each session. The subject performed 6 trials for
all the 52 objects per session, where each trial was executed
along its corresponding predefined path, as shown in Fig.2.
During the first trial t1, the object was moved from the initial
position P0 to the position P1, followed with another five
trials to move the object clockwise until it was returned to
the initial position P0. The counterclockwise session was
performed in a similar manner as Fig.2 but in a different
direction with respect to the initial position P0.

At the beginning of the experiment, the subject was seated
facing a table and the electrodes were connected to right arm
while the arm was at the rest position with an open palm,
as illustrated in Fig.2. The object center configuration was
defined with 6 marks on the table. A screen was placed at
the right side of the subject for showing the example picture
of current grasp type to be executed. First, the subject was
given 5 seconds to read the gesture figure shown on the
screen, followed with an audio cue illustrating the beginning
of the first trial. Each trial lasted for 4 seconds, and the object
was grasped and moved along its predefined path using the
designated grasp type for 6 trials without interruption, with
audio cues given between different trials. Within each 4-
second trial, the subject was required to complete 4 motion
tasks continuously including reaching, grasping, returning,
and resting. The complete timeline for grasping each object
is presented in Fig.3. Note that for each trial, the four grasp
phases (reaching, grasping, returning and resting) were per-
formed freely and naturally by the subject without limitation
on the speed of each phase as long as all the 4 phases were
executed within 4 seconds, in order to preserve sufficient
information of the dynamic motion.

B. Data Pre-Processing

The data were filtered with a band-pass Butterworth filter
between 40 Hz and 500 Hz for anti-aliasing and motion-
artifact removal. After that, we constructed the root-mean-
square envelopes [21] of the EMG signals, using a sliding
window with the size of 150 samples. Thereafter, the result-
ing data for each subject were normalized based on their
strength using maximum voluntary contraction (MVC) val-
ues. The MVC values for each of the subject’s muscles were
collected at the beginning of their collection session, where
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Fig. 2. Vertical view of experimental setup for the session of moving object
clockwise, where P is defined as the object position and t is defined as each
trial. Subject performed 6 trials per object, where each trial was executed
along its corresponding predefined path represented by arrows from one
position to another. The object was first moved from the initial position P0
to the position P1 during trial t1, followed with another five trials to move
the object clockwise until it was returned to the initial position P0.

the subject was asked to perform the strongest isometric
contraction continuously for 3 seconds.

To enable real-time inference, the processed EMG signals
were further divided into sliding windows of length T =
200 ms, with a step size of 40 ms between two neighboring
windows.

C. Feature Extraction

Compared to other form of representations, features of
EMG in time domain can be calculated based on raw
EMG data without any time-frequency transformations [22],
leading to a higher computation efficiency for real-time
implementation. Based on this intuition, three time-domain
features were adopted for this work: root mean square
(RMS), mean absolute value (MAV), and variance of EMG
(VAR). The RMS feature represents the square root of the
average power of the EMG signal for a given period of time,
which models the EMG amplitude as a Gaussian distribution.
MAV feature is an average of absolute value of the EMG
signal amplitude, which indicates the area under the EMG
signal once it has been rectified. VAR feature is defined as
the variance of EMG, which is calculated as an average of
square values of the deviation of the signal. Given a pre-
processed EMG time window X ∈ RC×T consisting of
C = 12 channels (representing 12 muscles) with the window
size of T = 200 ms, the feature extraction defines a mapping
from X to Z ∈ R3C×1, where Z is the extracted feature in
the time-domain.

D. Data Annotation

In order to approach the grasp type classification in a
continuous manner and simultaneously detect the dynamic
motion of the arm and hand, each EMG trial was segmented
unsupervisedly into four sequences corresponding to the
performed 4 motion phases, which were labeled separately
according to the specific motion. As shown in Fig.3, the
resulting EMG sequences within a trial were annotated in
parallel by two groups of labels: motion phase label l1

Fig. 3. Experiment timeline and the EMG segmentation and annota-
tion. First the subject was given 5 seconds to read the shown gesture,
followed with an audio cue for starting the first trial. Each trial lasted
for 4 seconds, and the grasp was performed for 6 trials totally without
interruption, between which audio cues were given. Each EMG trial was
further segmented unsupervisedly into four sequences and annotated as the
motion phase label l1 ∈ {1, 2, 3, 4} of reaching, grasping, returning and
resting. Simultaneously the first three motion phases were also labeled as
grasp type l2 ∈ {1, ..., 13} corresponding to the current target object, and
the resting phase was tagged by the open-palm label l2 = 0.

and grasp type label l2. Note that for each trial, different
grasp motion phases were performed naturally by the subject
without limitation on the timing of different phases as long
as the task was completed within the trial, so the length of
each phase was not necessarily equal.

1) Unsupervised Segmentation of Dynamic Motion: Un-
der specific stationary conditions, surface EMG signals
can be generally modeled efficiently as zero-mean random
process of Gaussian distribution [23]. Based on this as-
sumption, the EMG trial from continuous grasp movements
can be segmented into different dynamic sequences using
an unsupervised method of Greedy Gaussian Segmentation
(GGS) [17].

In this work, we broke down each EMG trial into four
segments by assigning three breakpoints, where the seg-
ments represent the 4 phases of reach-to-grasp motion, i.e.
reaching, grasping, returning and resting, respectively. The
precedence of different dynamic phases is considered here,
by accounting for higher probability for phase transitions
that are more likely to follow one another based on our
experiment protocol. For example, a “reach” movement is
followed by a “grasp” action and later followed by a ”return”
action, before the hand rests again. Then the local optimal
segmentation boundaries of each EMG trial could be located
by the GGS method. As depicted in Fig.4, four 12-channel
EMG data sequences were modeled as four independent
multivariate Gaussian distributions, with distinct means and
variances. Lastly, the resulting segments were annotated by
the motion phase label l1 ∈ {1, 2, 3, 4} representing the
reaching, grasping, returning and resting phases.

2) Annotation of Dynamic Grasp Types: After the seg-
mentation of EMG trials, in addition to the motion phase
label l1, the resulting EMG sequences were also annotated
by another group of grasp type label l2 ∈ {0, 1, ..., 13}
in parallel for classifying dynamic grasp, where l2 = 0
represents the open-palm/rest gesture and l2 ∈ {1, ..., 13}
corresponds to the other 13 grasp types listed in Fig.1.
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Practically, during the reach-to-grasp and grasp-to-return
movements, considering the shape and distance of the target
object, the formation of the subject fingers and wrist may
change as a result of arm motions [12]. Human hands in
this regard, tend to pre-shape prior to touching the targeted
object. Moreover, the hand even still continues to extend right
after the grasped object is released. These behaviours are
attributed to the characteristics and features of the targeted
object. Therefore, in order to provide a smooth representation
of the grasps, we annotated the EMG sequences of reaching,
grasping and returning with the executed grasp type l2 ∈
{1, ..., 13} corresponding to the target object, and tagged the
phase of resting with the open-palm label l2 = 0 (see Fig.3).

E. Grasp-Type Classification of Dynamic Arm Movements

We constructed two classifiers for respectively identifying
the motion phase label l1 ∈ {1, 2, 3, 4} and the grasp type
label l2 ∈ {0, 1, ..., 13}, with corresponding data pairs of
{(Xi, l1i)}ni=1 and {(Xi, l2i)}ni=1, where Xi ∈ RC×T is the
ith EMG window with channel number C = 12 and window
length T = 200 ms of f = 1562.5 Hz sampling rate, and
n is the total number of windows. For each EMG window
Xi ∈ RC×T , three time-domain features of RMS, MAV and
VAR were extracted as Zi ∈ R3C×1, leading to data pairs of
{(Zi, l1i)}ni=1 and {(Zi, l2i)}ni=1 which were the final inputs
to the motion-phase and grasp-type classifiers respectively.

To construct both classifiers, we utilized and trained the
processed EMG data using the extra-trees method [24]. The
extra-trees algorithm is an ensemble model, consisting of
multiple randomized decision trees trained by various sub-
samples of the data. By averaging the overall classification
over a group of decision trees, over-fitting could be efficiently
prevented, leading to better accuracy and robustness. In our
work, we observed that a combination of 40 trees in the
extra-trees forest could provide better results compared to
other parameters.

III. EXPERIMENTAL EVALUATION AND RESULTS

A. Training and Validation

We performed inter-subject training and validation for both
of the 4-class motion-phase classification and the 14-class
grasp-type classification. The classification analyses were
implemented through a 3-fold cross-validation protocol. For
each subject and object, the collected 6 EMG trials were
randomly and equally divided into 3 groups (2 trials for
each group), where the classifiers were independently cross-
validated on each of the 3 groups after trained on the rest 2
groups. All training and testing were performed with Python3
using Scikit-learn library.

B. Results and Discussion

The performances of the two trained classifiers are shown
in Table I and Fig. 5. Results in Table I demonstrate the av-
erage classification accuracies for each cross-validation fold
from both motion-phase classifier and grasp-type classifier,
with the mean accuracy over all folds given for each subject.
The average accuracy of the 4-class motion-phase classifier

Fig. 4. An example of the unsupervised motion phase segmentation of
dynamic EMG signal using the GGS algorithm, where the EMG signal
includes C = 12 channels and the red dashed lines represent the locally
optimal segment boundaries. Each of the four segmented EMG sequences
was modeled as an independent multivariate Gaussian distribution with
different means and variances. Finally, the segmented EMG sequences
were annotated by the motion phase label l1 ∈ {1, 2, 3, 4} accordingly
as reaching, grasping, returning and resting.

for each individual subject varies between 72.9% and 77.8%,
while the 14-class grasp-type classifier presents average
accuracies ranging from 81.8% to 90.6%. Those results
reveal that the grasp phases and types were well-predicted
in general. The dynamic-EMG grasp identification showed
a better performance than the motion-phase detection, due
to the higher degree of freedom regarding to how subjects
performed different motion phases than the grasp type, as the
experiment protocol did not specify the particular speed or
angle to grasp. The illustrated inter-subject variability across
different validation trials may also come from the varied
grasping patterns and directions for different trials of the
same subject. However, this higher degree of freedom could
enable more robustness and stability of the model to a wider
range of user postures during the dynamic grasp activity.
In addition, the training data from various subjects also
present different classification performances, which could be
influenced by factors such as shifting sensor locations and
distinct movement patterns of different users.

In Fig. 5, we show the accuracies of motion-phase and
grasp-type classifiers as functions of time in order to inspect
the performance variation during different dynamic phases
within a trial. Each time point in Fig. 5 represents a EMG
window and the accuracies were averaged within the same
window over the entire validation set from all subjects
and cross-validation folds. When computing the average,
timelines of all trials were aligned with the beginning of
the grasping phase (marked as 0ms), and the breakpoints be-
tween motion phases were also averaged across all validation
trials and indicated by the solid green lines.

Overall, the real-time accuracy of the achieved grasp-
type classification shown in Fig. 5 was higher than that
of the motion-phase identification. For the dynamic grasp-
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TABLE I
THE PERFORMANCES OF THE MOTION-PHASE AND GRASP-TYPE

CLASSIFIERS, DEMONSTRATING THE AVERAGE CLASSIFICATION

ACCURACIES FOR EACH CROSS-VALIDATION FOLD, WITH THE MEAN

ACCURACY OVER ALL FOLDS GIVEN FOR EACH SUBJECT.

Fold 1 Fold 2 Fold 3 Mean

Subj. 1 motion clf. 77.2% 74.5% 78.2% 76.6%
grasp clf. 91.5% 88.7% 91.5% 90.6%

Subj. 2 motion clf. 75.3% 73.1% 72.8% 73.7%
grasp clf. 88.9% 85.3% 86.6% 86.9%

Subj. 3 motion clf. 72.6% 73.4% 72.7% 72.9%
grasp clf. 87.4% 87.2% 87.8% 87.5%

Subj. 4 motion clf. 78.7% 76.6% 76.4% 77.2%
grasp clf. 89.3% 87.4% 88.3% 88.4%

Subj. 5 motion clf. 78.4% 75.9% 79.1% 77.8%
grasp clf. 82.8% 80.5% 82.2% 81.8%

type classification, the performance was stably over 80%
accuracy throughout most of the trial as illustrated in Fig. 5.
Compared to the motion-phase classification, the grasp-type
classification relies more on the lower arm configurations
which are more stable even with different grasping directions
and angles. The grasp-type classification accuracy were also
changing smoothly during the phase transitions, demonstrat-
ing the continuity in lower-arm configuration change during
the grasp movements. The grasping phase displayed a more
steady performance of grasp-type identification, since more
static muscle contraction was necessary to keep holding an
object so that more detectable signals could be generated.
Moreover, instead of distracting the classifier from current
grasp type, including the dynamic portion during reaching
and returning in the training set substantially takes advantage
of the continuity of grasp motions and increases the number
of windows available for each class.

More performance fluctuation in time could be observed
from the motion-phase classification compared to the grasp-
type classification. As demonstrated in Fig. 5, the accuracies
of motion-phase identification reach peaks in the middle of
each motion phase, and then decrease again until the next
phase. More errors occurred during phase transitions, and
specifically a dramatic accuracy drop was observed between
reaching and grasping phases. This accuracy drop may be
caused by the fact that the subject performed contact grasps
where they were touching an external object between reach-
ing and grasping phases, which could result in a significant
change in the EMG signal from the higher-arm muscles [25].
The higher arms are more in charge of the direction and
angle of the limb movement, while the lower arm and hand
are more responsible for the grasp activity, so that higher
arm may experience more variability during a dynamic
movement for the same grasp type. Therefore, a possible
reason for the accuracy fluctuations of the motion-phase
detection throughout the entire trial could come from varying
patterns and angles that different individuals utilized in
different trials, leading to distinct co-contraction responses of

Fig. 5. The accuracies of grasp-type and motion-phase classifiers, presented
as functions of time, where each time point represents a EMG window
and the accuracies were averaged within the same window over the entire
validation set from all subjects and cross-validation folds. The timelines of
different trials were aligned with the beginning of the grasping phase (which
is marked as 0ms) when computing the average, and the breakpoints between
motion phases are also averaged across all validation trials and represented
by the solid green lines.

higher arms. In addition, the accuracy decrease during grasp-
to-return movement was lower than that of reach-to-grasp
movement, since releasing an object applies force in a more
gradually-decreasing manner than contacting and lifting an
object. There was good agreement between the two classifiers
regarding their classification accuracies during resting phase,
with smooth convergence to stable performances, indicating
that the EMG signals from resting phase were more steady
and generic for different subjects and trials.

IV. CONCLUSION

This paper presented a non-static EMG recognition
method for identifying real-time hand/arm movements to
generate robust control regarding the dynamic muscular
activity variation in practice. We trained and validated the
proposed framework using EMG signals generated from
continuous grasp movements with variations on dynamic
arm/hand postures, to encode the transitions from one intent
to another based on common sequences of the grasp move-
ments. We constructed two classifiers for respectively recog-
nizing the motion-phase label and grasp-type label, where
the dynamic motion phases were segmented and labeled
in an unsupervised manner. Finally, the proposed method
was assessed in real-time and the corresponding accuracy
variation over time was presented. Results illustrated the
effectiveness of the framework built with the EMG data of
high degree of freedom.
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