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Abstract— Wearable devices are having a transformative
impact on personalised monitoring and care. However, they
frequently have limited battery life, requiring charging every
few days; a major source of user frustration. Kinetic energy
harvesting may help overcome this, collecting energy from
the user’s motion to allow the device to self-charge. While
there are many works which have investigated wearable energy
harvesting potential, none have incorporated socio-economic
factors which affect activity, such as occupation type, on
energy harvesting potential. We use the UK Biobank free-living
accelerometer dataset to investigate the impact of occupational
patterns on energy harvesting potential for the first time. We
identify that those following shift patterns have a different
distribution of when power is available, with those who work
shifts having the most power intense period spread over a longer
period of the day compared to controls. When stratifying into
day or night shift work, we identify that those who work night
shifts have a large variation between participants, as their most
energy dense period is spread over the entire 24-hour period.
This is compared to day shift workers who have the most power
concentrated within a substantially smaller window, typically
in the morning. Considering these socio-economic factors may
affect system design of wearable energy harvesters.

I. INTRODUCTION

Energy harvesting promises to reduce reliance on battery
maintenance for wearable devices, which may increase com-
pliance and increase use in medical settings [1]. Scavenging
energy from the ambient environment, known as kinetic en-
ergy harvesting, where semi-predictable levels of power can
be harvested from quasi-periodic movements such as walking
and running, is a potential energy source for wearable energy
harvesters [2]. There is considerable literature on developing
kinetic energy harvesters in non free-living environments,
that is, in the lab, including walking, running and cycling [2].
However, it is challenging to provide actual estimates of
the true amount of energy that can be scavenged from free-
living movements, as levels of activity, and therefore energy
harvester output, vary greatly between population groups.

To investigate this, we have utilized the >100,000 ac-
celerometry datasets in the UK Biobank to generate es-
timations of energy harvesting potential across different
population groups, including differences in harvester output
across the day, days of the week, seasons, age groups and
presence of diseases [3]. It is important to understand when
power is available from an energy harvester so that operations
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that consume large amounts of power, such as the wireless
transmission of data, can be scheduled to match the time
period when the energy harvester is likely to have the greatest
power output. However, different socio-economic factors,
which affect daily routines, may lead to changes in the
expected times when power is available.

In this work, we build upon our previous analysis to
consider for the first time the impact of socio-economic
factors on the output of a wearable kinetic energy harvester.
We consider the impact of a participant’s occupation, partic-
ularly whether their job involved taking part in shift work,
to investigate changes in energy harvester output. Others
have previously investigated accelerometer measurements on
shift-workers, including hospital shift workers [4], differ-
ences between activity and sleeping time [5] and physical
activity/sedentary periods at work [6]. In this work, we build
upon this, but focus on energy harvesting potential as a key
step towards deploying energy harvesters in real devices to
be used by a diverse population.

II. METHODS

A. The UK Biobank dataset

As part of the UK Biobank study, physical activity was
collected from over 100,000 participants aged 43–78, by
instructing participants to wear a wrist worn accelerometer
(Axivity AX3) on their dominant wrist for 24-hours a day
for a week [7]. The sensor collected continuous 3-axis
accelerometry without the need for sensor removal over the
7-day period while sampling at 100 Hz. We make use of
this accelerometry data in this paper, alongside the detailed
work environment data collected as part of an online follow-
up with participants. This research has been conducted using
the UK Biobank Resource under Application Number 33693.

B. Participant selection

Prior to participant selection, we exclude participants
from the study based upon criteria laid out in [3]. This
briefly compromises of excluding participants who wore the
accelerometer for less than 20-hours a day, were under the
age of 45, had large gaps in recorded data, crossed a daylight
savings crossover, or removed their consent prior to our
analysis being undertaken. Due to our previously reported
discrepancies on the first day of data collection [3], we also
discard the first day of data collection for each participant.

Given the large-scale and prospective nature of the UK
Biobank study, data was collected over multiple dates both
within the same category of data and across data types.
This necessitates care to obtain a valid analysis, in particular
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ensuring the metadata is correct for the period when the main
data collection (the physical activity accelerometery in this
manuscript) took place, especially when some measures were
repeated. To account for this, we only include participants
that we can reasonably assume were employed at the time
of data collection, by excluding all participants who entered
their metadata over 100 days before carrying out their
accelerometer data collection, as a reasonable assumption
that their occupation had not changed during this period.

We select all the participants who met the inclusion criteria
above, and then select all participants who indicated whether
their job involved shift work (see Data-Field 22620 in the UK
Biobank for definitions of shift work). From this we generate
our first cohort to analyze, including a comparison control
dataset of participants who are employed but whose job did
not involve shift work. The control dataset is generated by
randomly selecting an equivalent number of participants,
matching them on sex and age. We refer to this cohort
as cohort 1, with 1295 participants per group (2590 total),
626/669 female/male respectively per group, and ages of
55.9 ± 6.1 and 55.7 ± 6.0 (mean ± SD), for the control and
shift working group respectively. We also generate a second
cohort, cohort 2, as a subset of cohort 1. In this second
cohort, we stratify participants further by breaking down the
dataset to identify whether their job involved only day or only
night shift work patterns respectively (Data-Fields 22630 and
22650). In this cohort participant numbers were substantially
smaller than cohort 1, particularly in the group who reported
they only worked a night-shift pattern. We therefore follow
the same procedure as in cohort 1, selecting control and day
shift participants to match the demographics of the night
shift pattern participants. Cohort 2 has 51 participants per
group (153 total), 25/26 female/male respectively, and ages
of 57.6 ± 6.3, 56.9 ± 5.8 and 57.9 ± 5.2 for the control,
day shift workers and night shift workers respectively.

C. Energy harvesting model

The energy harvesting model is based upon a second-order
mass-spring-damper from [8]. Here, we use the parameters
previously identified as optimal for a harvester placed on
the wrist and sized at 50 mm. These parameters are m =
0.11 g, b = 0.07 kg/s, k = 12.15 kg/s2 (using the notation
from [8]). In this paper we identify the theoretical maximum
output from the energy harvester and thus use an efficiency
factor of 100%, which can be scaled as appropriate to match
a desired practical harvester implementation.

We process each of the raw accelerometer files using the
pre-processing steps in [3], based upon those by the UK
Biobank expert group [7]. These steps briefly compromise
of: calibrating each record to local gravity, resampling to
100 Hz, and filtering with a sixth-order zero-phase high-
pass Butterworth filter, fh = 0.3 Hz, to remove the gravity
component. After pre-processing, each participant’s record is
processed by our harvester model, generating power output
against time for the seven-day record. We down-sample the
output from 100 Hz to one sample a minute (0.0167 Hz), to
reduce storage and processing requirements.

D. Analyses

We explore multiple representations of energy harvester
output to compare the difference our two cohorts. These are:

• Cohort 1: Variations in mean harvested power across
24-hours for an average day.

• Cohort 1: Location of the most power dense ten minute
period across the weekdays, Saturday and Sunday.

• Cohort 2: Differences in the total average harvested
power across 07:00 to 20:00, defined as daytime hours.

• Cohort 2: Location of the most power dense ten minute
period across the weekdays, Saturday and Sunday.

III. RESULTS

A. Comparisons on cohort 1

In Fig. 1 we compare the harvestable power across an
average day in cohort 1. In Fig. 1 the lines represent the
mean value at each time point, while the shaded regions
denote 95% confidence intervals. Here we can see how
the two groups follow a similar profile; low power output
(< 30 µW) during the night, with the shift worker group
generating slightly more (∼10 µW) than the control group.
Both groups begin to increase in power output at around
05:00, with the power output from the control group rising
faster than the shift worker group, whom take around 1 hour
longer to plateau. At around 09:00 for the control and 10:00
for the shift worker group, power output plateaus between
140–160 µW, with a slight dip of around 20 µW in the
afternoon (13:00–17:00), which is more prominent in the
control group. The shift group has peaks around 30 µW high
at 9:20 and 12:30, possibly corresponding to shift change
over times. Between 16:40–17:20 the control group has
spikes of power around 20–30 µW high, corresponding with
commuting times, an effect not present on the shift working
group. Both groups remain around 120–150 µW until 19:00,
when both groups begin to roll-off, both following a close
pattern to each other. The total energy harvested across an
average day was 7.62 J for the control group and 7.92 J in
the shift worker group. In Fig. 1 some of the differences
in lifestyle are starting to become evident, and there is the
expected pattern of the shift working group being more active
in the night. Interesting for wearable designers is the slower
morning increase of power, meaning that compensation may
need to be made, as the time for power output to plateau is
later in the day in shift workers.

To provide more insight into the spread of data values,
we compare the location of the ten minute window across a
24-hour period which contains the largest amount of power
generated. For compactness we make comparisons on the
ten minute window for participants stratified by: weekday,
Saturday and Sunday; with only minor differences present
between weekdays. In Fig. 2, a raincloud plot of the location
of the ten minute window that contains the highest power
over weekdays, Saturdays and Sundays is shown. In Fig. 2,
the top part shows a kernel density estimation (KDE), the
central part a box plot and the rain denotes the individual
data points with added jitter to improve visibility. In Fig. 2
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Fig. 1. Comparison of the mean power output across the day, for an average day, for cohort 1. Shaded regions denote 95% confidence intervals.

we can identify more details in the power profile between
shift workers and the control group than in Fig. 1. Looking
at the KDE for the weekday data, we see how the control
group is approximately grouped into two; with one group
whom have the most power dense period in the morning,
around 08:00, and the second who have a peak in the evening,
around 18:30. In the shift worker group, this split is less
clear, with the most energy dense period being spread across
08:00–18:00. The differences in distribution can also be
highlighted by comparing the Inter Quartile Range (IQR),
with the shift working group having a narrower range; 1 hour
and 22 minutes smaller than the control group. Comparing
the differences between the two groups on Saturday and
Sunday, these are substantially smaller, with very similar
distributions on Saturday, small differences in the median
time (13:15 vs. 13:14 control and shift respectively) and the
IQR (6 hours 27 minutes vs 6 hours 51 minutes for control
and shift respectively). Sunday again shows similar patterns,
with a slightly larger skew to the left of the distribution in the
control group representing more participants with their most
energy dense period in the morning, compared to a slightly
more even spread for the shift workers. These differences
highlight how, particularly on the weekdays, there is less of
guarantee that the best time for powering energy harvesting
devices is in the morning, as the time with the maximum
power is spread over a longer time period with shift working
participants.

B. Comparisons on cohort 2

The total energy harvested during an average day was
8.04 J, 7.41 J and 8.18 J for the control, day shift and night
shift workers respectively. Due to the smaller size of cohort 2,
it is not possible to create a meaningful plot of cross-subject
average power output over time with the high temporal
resolution as in Fig. 1. Instead, we compare the mean power
output between groups during daytime hours (07:00–20:00).
Fig. 3 demonstrates this as a violin plot, with the white dot as
the median, the thick black bar the IQR and the thin line the
limits of the distribution (excluding outliers). Dots indicate
individual data points, with added jitter. The outer violin is
a KDE of the distribution. The control and day shift group
have a similar median power during the day (at 127 µW and
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Fig. 2. Location of the ten minute window across a 24-hour period where
average energy harvester output is the greatest, for cohort 1. Note the y-axis
of the kernel density estimate (KDE) represents the probability of a data
point occurring at this time, the total area of each KDE sums to 1.

121 µW respectively), while the night shift group have a
marginally lower median power at 107 µW. Further, the IQR
of average power is greater in the control group compared
with the day shift group, with 75 µW compared with 61 µW.
The night shift group has an IQR of 48 µW. The smaller IQR
in the shift working groups suggest that participants working
shifts generate a more predictable power output, i.e. they are
likely to undertake a set level of activity, whereas the control
group has more people who are both less and more active.
The small differences between the night shift group and the
control are surprising, as we expect the night shift group to
be inactive during this daytime period.

Finally, we compare the location of the ten minute window
with the highest power generated across a 24-hour period for
cohort 2, shown in Fig. 4. Initially, the KDEs demonstrate
how the night shift group has the greatest spread of values,
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Fig. 3. Mean power during daytime hours (07:00 – 20:00), for cohort 2.
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Fig. 4. Location of the ten minute window across a 24-hour period where
average energy harvester output is the greatest, for cohort 2.

with the most energy dense period occurring across the
entire 24-hours, compared with the substantially narrower
distributions of the control and day shift workers. This effect
is prominent on all days of the week, although Sunday has
fewer participants located in the early hours of the morning.
In the control group, the majority of participants fit into two
groups, the morning and afternoon, with the exact timings
of these differing between weekdays and weekends and two
groups being considerably closer in time on Sunday. In the
day shift group, participants are largely centered around
the morning hours 06:00–10:00, with this moving around
an hour later on Saturday and an several hours later again
on Sunday. Compared to the night shift group, with the
exception of outliers, both the control and the day shift group
have the most power dense period after 06:00. Of note, the

largest difference between the spread of groups occurs on
Sunday, where the control group has an IQR of over 5 hours,
compared with the night shift group with an IQR of over
10 hours. This has a significant implication for designers,
who will need to know the times when the most energy is
available from an energy harvester, but for those who work
night shifts, particularly on Sunday, this is spread over long
time period and it is not possible to assume power will be
available in a narrow window.

IV. CONCLUSIONS

We have compared how the output of a wearable kinetic
energy harvester changes both in amount of power and the
times of day that the power is available, stratified by whether
their occupation involved shift work. We have identified that,
within the UK Biobank dataset, participants who worked
shifts showed similar patterns in the typical profile of power
availability throughout the day, while the location of the
most energy dense period was spread over a larger time
period in those who worked shift work. We also identified
that the type of shift work undertaken by participants had
a large impact on the time of day when the most power is
available, with night shift workers having values spread over
24-hours, compared to day shift workers where the majority
were situated in the morning. These results have substantial
impacts for designers of wearable energy harvester devices,
where energy intense operations need to be timed with the
time where power is most available.
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