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Abstract— During endoscopic surgery, smoke removal is 

important and meaningful for increasing the visual quality of 

endoscopic images. However, unlike natural image dehaze, it is 

practical impossible to build a large paired endoscopic image 

training dataset with/without smoke.  Therefore, in this paper, 

we propose a new approach, called Desmoke-CycleGAN, which 

combined detection and removal of smoke together, to improve 

the CycleGAN model for endoscopic image smoke removal.  The 

detector can provide information about smoke locations and 

densities, which helps the GAN model to be more stable and 

efficient for smoke removal. Although some imperfections still 

exist, the experimental results have demonstrated that this 

method outperforms other state-of-the-art smoke removal 

approaches with unpaired real endoscopic images. 

 
Clinical Relevance— This can help improve the visibility in 

endoscopic surgery and to get smoke-free endoscopic images 

with better quality.  

I. INTRODUCTION 

In endoscopic surgery, with the development of medical 
imaging technology, doctors can see the internal tissue clearly 
just as they are looking at the tissue directly. However, some 
smoke may be generated while performing a surgery, which 
will heavily degrade the clarity of some details of tissue. 
Therefore, smoke removal task for endoscopic images is 
necessary.   

Smoggy images can be enhanced by traditional image 
enhancement methods. Many classic models have been used 
for de-smoking, such as atmospheric scattering model [1] and 
dark channel prior [2]. Besides traditional image dehazing 
approaches, deep learning algorithms have achieved great 
success these years in many applications, including image 
dehazing, whether training with paired images or unpaired 
images. For example, Chen et al. proposed a generative 
cooperative network for endoscopic smoke segmentation and 
removal (De-smoke GCN) [5]. Sidorov et al. propose a 
method based on Perceptual Adversarial Networks [4] and 
SSIM-Loss (SSIM-PAN) [3]. However, these methods are 
supervised learning models which relies on many paired 
training images. An unsupervised method based on 
CycleGAN [6] and perceptual loss (CycleDehaze) [8] is 
proposed by Engin et al.. They use a pre-trained VGG [12] 
network to extract features in smoggy images to improve the 
quality of de-smoked images. However, for real endoscopic 
image de-smoke, it still has limitations for avoiding semantic 
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errors. For instance, without a reference image, they may 
remove some devices or generate strange new devices by 
mistake since the devices are kind of similar to smoke in color.  

And thus, in this paper, we add a smoke detection network 
into the CycleGAN-based framework for detecting the 
locations and densities (i.e., a single channel mask with values 
between 0 and 1) of smoke. This extra information can 
improve the training procedure of CycleGAN and achieve a 
better de-smoke result. Furthermore, during the training 
process, the detector is updated synchronized with its output 
from an initial binary mask (can only reflect smoke location) 
to a [0,1] normalized grayscale image (can reflect both 
location and density of smoke). In addition, a cycle-
consistency perceptual loss and newly proposed cyclic 
detection loss have been incorporated to improve the stability 
of detector and generator. Through experimental evaluations, 
this method can be proved more effective compared to other 
state-of-the-art approaches trained with unpaired images.  

This paper is structured as follows. In section II, we discuss 
our proposed method. Then in section III, we present the 
experiments and evaluation results. Finally, the conclusions 
are drawn in section IV. 

II. PROPOSED METHODS 

The basic GAN model [10] is composed of a generator and 
a discriminator. The generator aims to find a mapping 

 GzGx ;ˆ  that maps latent random variables to generated 

data. To optimize this mapping, the discriminator is trained to 
recognize fake and real samples. CycleGAN [6] provides a 
solution of unsupervised image-to-image translation. The 
framework is comprised of two GANs to find two-directional 
mappings between two domains. Besides the GAN loss, a 
cyclic loss function forces the original image and the 
reconstructed image to be consistent with each other. 

We adopt the CycleGAN [6] model as our basic model for 

endoscopic image de-smoke. Unlike general image-to-image 
translation, we incorporate some prior knowledge of smoke 
(e.g., location and density), derived by a detection sub-
network, into the CycleGAN framework to improve 
endoscopic image de-smoke. In addition, two cyclic 
consistency loss and a smooth L1 loss have been added to 
improve the robustness and stability of the detector and 
generator networks.  
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Figure 1.  The architecture of our method, where G  & F  refer to 

the generators, XD & YD to the discriminators, and Det to the 

detector. This architecture can be split into two parts: smoggy to 

smoke-free image ( YX  ), and smoke-free to smoggy image 

( XY  ). 

 

A.  Our De-smoke Networks 

The overall architecture of our proposed endoscopic image 
de-smoke model is shown in Fig.1, where G  & F  refer to the 

generators for translating images between smoggy domain and 

smoke-free domain, XD & YD to the discriminators for 

discriminating whether the generated images are real or fake, 
and Det to the detector for segmenting smoke mask from 

smoke-free images. Each image is a 3-channel RGB image, 
and each mask is a 1-channel gray-scale image. Because we 
incorporate a detector for providing extra smoke information, 
the input data is a four-channel image including RGB and an 
additional smoke mask. Smoggy image and its mask are put 
into the generator together as a 4-channel tensor and then 
output a 3-channel smoke-free image. As for the smoke-free 
input, we set its mask as a zero matrix in the same size as the 
input, and they will be put in another generator together to 
output a 3-channel smoggy image. A pre-trained U-Net [9] 
structure is employed to provide an initial binary smoke 
segmentation mask from original images, which can represent 
the location of smoke. To provide extra information about the 
density of smoke, we modified the binary mask into a gray-
scale image mask, which is in zero-to-one closed continuous 
interval value, during the training process. Moreover, the 
continuous smoke detector is optimized synchronously during 
the training of GAN model. A cyclic detection-consistency 
loss is proposed in our work, which can add regularizations to 
the differences between the masks detected from real smoggy 
images and similarly reconstructed smoggy images. 

 

B. Loss Functions 

There are different functions for different parts of the 
method. 

Adversarial Loss: We use the adversarial loss [10] for two 

mapping functions ( YX  and XY  ). As for one of the 

mappings, such as YX  , the loss function can be expressed 

as: 
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where x and y , separately, are real images in domain X  and 

Y , and G is the generator that transfer the images in domain 

X to images which look similar in domain Y., while YD  is the 

discriminator that tries to differentiate between the generated 

samples and real samples in domain Y . Similarly, we can 

derive the other function  XYDFL XGAN ,,,  in the same way. 

Cycle-Consistency Loss: we apply the cycle-consistency 

loss [6] to bring the reconstructed image back to original 

image, which can improve the accuracy of the mapping from 

input to output in target domain. This can be described as:  
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where    xGF  and   yFG  are reconstructed images in 

domain X and Y .  

Cyclic Perceptual-Consistency Loss: Both adversarial loss 

[10] and cycle-consistency loss [6] use only pixel-level 

feature, which cannot recover all the missed information 

when the smoggy region in the image is heavily blurry. With 

perceptual-consistency loss [8], high-level and low-level 

features can be extracted properly. We use VGG16 [12] 

architecture as extractor, to extract features from its nd2  and 

th5  pooling layers. Then, this loss [8] can be described as:  
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where   is a VGG16 [12] feature extractor. 

Cyclic Detection-Consistency Loss: This loss is used for 

training smoke detector network. Because the quality of 

images generated by the generator is usually poor at the initial 

stage, the detector network is not being trained during this 

stage. We use a pre-trained smoke detector instead.  When the 

reconstructed smoggy images are similarly consistent with the 

real smoggy images, we start to train the detector with a 

detection consistency loss. We assume that the smoke 

detected from reconstructed images and real images should be 

consistent, which requires the results of detector should be 

similar for the original image and reconstructed image. This  
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Figure 2.  Qualitative results on real testing dataset. 

 
Figure 3.  Comparisons on synthetic and real testing dataset with De-

smoke GCN. 

 

improves the stability of the detector while training the model. 

This newly proposed cyclic detection-consistency loss is with 

the following form: 

          ~
1
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where, d  is the smoke mask detected from smoggy images by 

detector.  

Smoothness Loss: In fact, the smoke is supposed to be 

continuous and smooth, taking penalties for discontinuity can 

be reasonable. Therefore, we take the L1 norms of the 

detected smoke masks’ gradients along dx and dy directions 

for image smoothing.  This function can be expressed as: 
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Full Objective Function: Thus, the full objective of loss 

function in our model can be described as follows: 

 
1 https://www.intuitive.com/ 
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where L is the full objective,  G and F stand for two 

generators, XD and YD stand for the discriminators, and  s 

are the hyper-parameters for each loss function.  

III. EXPERIMENTS AND RESULTS 

A. Implementation Details 

We used PyTorch framework for all of the training and 
testing process. A simulated pair-matched smoggy dataset has 
been used for training an initial smoke detector network as the 
pre-trained detector.  We trained the model with NVIDIA 
Geforce RTX 2080Ti graphics card (11GB Graphic Memory). 
In the experiment, we used ADAM optimizer with an initial 
learning rate of 0.0001, batchsize 4, and 400 training epochs. 

As for the architecture, we used U-Net [9] structure for the 
detector. This structure is composed of five convolutional 
blocks as an encoder to abstract the feature from input images 
into 1024-channel tensors. Symmetrically, the decoder 
consists of five de-convolutional blocks, which is helpful to 
recover tensors into one-channel smoke masks. Apart from 
these blocks, skip connections are used to transfer high-level 
information to the bottom of the network. We used the same 
generator architecture as CycleGAN [6], which contains two 
stride-2 convolutions, residual blocks [13], and two other 
fractionally-strided convolutions with stride 1/2. Specifically, 
we used 9 blocks for our tasks and apply instance 

normalization. Similar to CycleGAN [6], we used 70  70 

PatchGAN [11], which tries to distinguish whether 70 70 
image patches are real or not, and upsampling layers coupled 
with convolutional layers were used to replace the de-
convolutional layered in case of checkerboard artifacts. The 
VGG16 [12] network used for cyclic-perceptual consistency 
loss is a pre-trained model in ImageNet [14]. Finally, in order 
to stabilize the training process, we applied Wasserstein GAN 
[20] and spectral normalization [15]. 

B. Dataset 

All of the datasets we used in this experiment is captured 
from Leonardo Da Vinci surgical robot video which was found 
on Intuitive official website1, so there were no original paired 
images. As for the GAN model, we totally used hundreds of 
unpaired images captured from Leonardo Da Vinci surgical 
robot video for training and testing. 

C. Experimental Results 

We made comparisons between related state-of-the-art 
unsupervised methods, such as CycleGAN [6], CycleDehaze 
[8], and UNIT [7], and a supervised method, De-smoke GCN 
[5]. The smoke-free images generated by original CycleGAN 
[6] are not good enough, since it has a poor performance while 
processing partly smoggy endoscopic images. For instance, 
some semantic errors may occur after hundreds of epochs of 
training, and some of the results may be blurred because there  
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TABLE I.  QUANTITATIVE RESULTS COMPARED WITH STATE-OF-THE 

ART METHODS 

Method 
Evaluation Metrics 

NIQE PIQUE FID 

Cycle-GAN 47.59 10.67 147.33 

Cycle-Dehaze 39.00 4.50 170.19 

UNIT 39.37 5.71 181.97 

De-smoke GCN 64.94 8.60 142.56 

Ours 36.81 4.77 134.15 

 

are too many subtle structures in endoscopic images, which 
are hard to recover.  CycleDehaze [8] improved some details 
in the images, although some errors still exist. As can be 
shown in Figure 2, compared with those methods, the results 
generated by our model have the fewest semantic errors and 
the closest color with the original images. Although De-
smoke GCN [5] framework showed satisfactory image quality 
while testing, it is a supervised training approach with 
synthetic dataset. When the real smoke images are not in the 
training dataset, it may suffer from incomplete smoke 
removal, as is shown in Figure 3. Moreover, this supervised 
method may suffer from abnormal image color, as can be 
shown in Figure 2. 

As for the evaluation, the lack of paired data was kind of 
troublesome, because some traditional evaluation metrics 
cannot be used, such as Peak Signal-to-Noise Ratio (PSNR) 
and Structural Similarity Index (SSIM) [16]. Therefore, we use 
some no-reference image quality evaluation score e.g., 
Perceptual based Image Quality Evaluator (PIQUE) [17] and 
Natural Image Quality Evaluator (NIQE) [18] to evaluate the 
quality of smoke-free images generated by our model. 

Moreover, Frechet Inception Distance score (FID) [19]， 

which is usually used for evaluating GAN performance, is also 
adopted as one of comparison metrics. Our framework 
outperformed these existing methods in terms of these three 
evaluation metrics, as shown in Table 1. The lower these 
metrics indicate that the generated images have less distortion 
and fewer differences compared with high-quality images. 

IV. CONCLUSION 

In this work, we propose an approach of endoscopic image 

smoke removal with cycle consistency GAN and smoke 

detection subnetwork.  Besides the GAN loss and the cycle-

consistency loss, we also incorporate cyclic detection loss and 

smoothness loss for training the detector. With the assistance 

of detector, semantic errors have been reduced and detailed 

structures have been recovered. Since the endoscopic images 

are filled with subtle details, such as different medical devices 

and diverse colors of tissue. A few details are still not 

generated well, which deserves our future study.  
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