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Abstract—MicroRNA-based gene therapy for cancer 

treatment via nanoparticles (NPs) requires navigation of 

multiple physical and physiological barriers in order to 

efficiently deliver the miRNAs to the cancer cell cytoplasm. We 

here present a mathematical model to investigate the variability 

associated with tumor, NP, and miRNA characteristics, and 

identify the limiting factors in miRNA delivery to tumors. 

Through global parameter analysis, the miRNA release rate 

from NPs and NP degradability were found to have the most 

significant impact on cytosolic accumulation of miRNAs. These 

NP properties can be fine-tuned in order to optimize the delivery 

system for enhancing the efficacy of miRNA-based therapy.  

 
Clinical Relevance—Understanding the effect of nanoparticle, 

tumor, and miRNA characteristics in governing the efficacy of 

miRNA-based cancer therapy will support its clinical 

translation.   

I. INTRODUCTION 

MicroRNAs (miRNAs) are small non-protein-coding 
RNAs (~22 nucleotides) that regulate cell signaling by binding 
to genes that code for proteins, thereby inhibiting protein 
translation. It is increasingly recognized that miRNA 
dysregulation causes aberrant cell signaling associated with 
cancer. miRNAs are either found to be downregulated [1] or 
upregulated [2] in tumors, which manifests as downregulation 
of tumor suppressor effects and upregulation of oncogenic 
effects, respectively. Therefore, exogenous administration of 
miRNAs or their antagonists to normalize aberrant signaling 
pathways is currently an attractive approach to inhibit tumor 
cell proliferation. However, given the short half-life of naked 
miRNAs due to degradation by plasma ribonucleases, limited 
tumor penetration and cellular uptake due to their negative 
charges, and off-target effects due to non-specific delivery, 
nanoparticle (NP)-based delivery systems have been used to 
ensure targeted and efficient delivery to tumor cells [3]. 
Whereas the application of nanomaterials in cancer has shown 
potential to improve targeted drug delivery to tumors [4, 5], 
challenges with low tumor deliverability due to insufficient 
understanding of the collective effects of NP properties on NP 
pharmacokinetics and tumor penetration still exist. To this end, 
mechanistic mathematical modeling can be used as a valuable 
in-silico tool [6-8] to improve the understanding of NP-
mediated miRNA delivery to cancer cells in vivo, and can 
provide practical guidelines to optimize NP design for 
enhanced miRNA therapy efficacy.  
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II. METHODS 

A. Model development 

We have developed a multiscale mechanistic model, 
calibrated to mice, to study the pharmacokinetics and 
pharmacodynamics of NP-delivered, miRNA-based cancer 
therapy. As shown in Fig. 1, the model consists of a plasma 
(systemic circulation) and a tumor compartment, where the 
latter is further divided into vasculature, interstitium, and 
cytosolic sub-compartments. Following intravenous (i.v.) 
injection of miRNA-loaded NPs into the plasma compartment, 
NPs are cleared from the systemic circulation via renal and/or 
hepatobiliary excretion mechanisms (based on their 
physicochemical characteristics) [9, 10]. In the current model, 
clearance is parameterized by 𝑘Cl (units, wk−1), which 
empirically varies with NP diameter (𝜙NP; units, cm) as: 𝑘Cl =

ln(2)

0.11∙𝑒−1.33∙𝜙NP−0.001∙𝑒−9.7∙𝜙NP
, obtained by fitting the plasma 

half-life data of quantum dots of varying sizes from the 
literature [10, 11].  

NPs circulating in the plasma compartment are transported 
between the plasma and tumor vasculature sub-compartment 
via perfusion, defined by the plasma flow rate 𝑄 (units, mL ∙
𝑔−1 ∙ wk−1), which is determined by the following empirical 
relationship with tumor volume 𝐵(𝑡) (units, cm3): 𝑄 = 2843 ∙
𝑒−0.65∙𝐵(𝑡), obtained by fitting a monoexponential function to 
data reported in [12]. From the tumor vascular sub-
compartment, NPs can unidirectionally permeate and 
accumulate in the tumor extravascular regions to deliver the 
cargo to the cancer cells (a phenomenon referred to as the 
enhanced permeability and retention (EPR) effect). As shown 
in Fig. 1, we model this serial process in three steps, 
characterized by the following rate constants. i) The 
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Figure 1.  Model schematic. Model consists of a plasma and tumor 
compartment, with the latter sub-compartmentalized into vascular, interstitial, 
cell membrane, and cell cytosolic space. Yellow circles represent 
nanoparticles (NPs) loaded with miRNAs (green stars). Red arrows indicate 
transport processes. Curved orange arrow indicates tumor growth. Black 
hammerhead indicates inhibition of tumor proliferation. Magenta arrows 
represent degradation and yellow arrow indicates clearance of NPs.  
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extravasation rate of NPs from the vascular to interstitial sub-
compartment is characterized by the permeability (𝑃)-surface 
area (𝑆) product (𝑃 ∙ 𝑆), where 𝑃 (units, cm ∙ wk−1) is a 
function of tumor vascular porosity and the ratio of NP size 
(𝜙NP) to tumor vascular pore size (𝜙pore; units, cm) [13], and 

𝑆 (units, cm2/cm3) relates to tumor volume 𝐵(𝑡) as 𝑆 =
0.26 ∙ 𝑒−4.5∙𝐵(𝑡) + 138 ∙ 𝑒−0.04∙𝐵(𝑡), obtained empirically from 
data in the literature [14]. ii) The diffusion rate of NPs across 
the tumor interstitium to reach the cancer cells is characterized 
by the ratio 𝐷 𝐿2⁄ , where 𝐷 is NP diffusivity (units, cm2 ∙
wk−1) and 𝐿 is the intercapillary distance (units, cm), 
suggestive of the characteristic length of the interstitium 
between tumor vessels and cancer cells. iii) Once in the 
vicinity of cancer cells, NPs undergo endocytosis 
(characterized by the rate of endocytosis (𝑘endo; units, wk−1)) 
to enter the cell cytosolic region.  

The endocytosed NPs then release miRNAs into the 
cytoplasm at a rate characterized by 𝑘rel (units, wk−1), while 
undergoing degradation inside the endosome at a rate 𝛿NP 
(units, wk−1). The released miRNAs act on their target site 
(messenger RNA molecules) to suppress protein translation 
and exhibit tumor suppressor effects, so the tumor growth rate 
constant 𝜎 (units, wk−1) is scaled by the dimensionless factor 

1 (1 +
𝐶𝑀(𝑡)

EC50
)⁄ , where 𝐶𝑀(𝑡) is the cytosolic concentration of 

miRNA and EC50 is the concentration of miRNA inducing half 
of the maximum possible tumor inhibition. Inside the cytosol, 
miRNA also undergoes degradation characterized by the rate 
constant 𝛿M (units, wk−1). The various model parameters 
were either known a priori or obtained through data fitting 
from the literature (Table I).  

TABLE I.  LIST OF MODEL PARAMETERS STUDIED IN GSA 

Notation Description Units Value (Range)a Ref. 

Tumor-associated parameters 

𝜎 Tumor growth rate 

constant 
wk−1 2.99 (1.3-6.5) [15] 

𝜙pore Dia. of tumor vessel 

pore 

nm 1700 (300-

4700) 
[16] 

𝐿 Tumor intercapillary 

length 

µm 100 (10-250) [17] 

𝜂𝑇,𝐵 Dynamic viscosity of 

tumor blood 

cP 7.42 (4.5-10) [14] 

𝜂𝑇,𝐼 Dynamic viscosity of 

tumor interstitium 

cP 3.5 (2-5) [18] 

NP-associated parameters 

𝜙NP Dia. of NP nm 70 (25-150) − 

𝛿NP NP degradation rate wk−1 0.1 (0.01-1)  arb. 

𝑁0 No. of NPs per 

injection (represents 

dose of miRNA) 

− 2.5e+10 

(6.4e+9  
- 1e+12) ≡ 4µg 

miRNA (1-156 

µg) 

calc. 

miRNA-associated parameters 

EC50 EC50 of miRNA nM 1 (0.1-100) [19] 

𝑘rel Release rate of miRNA 

from NPs 
wk−1 0.42 (0.16-9.7) arb. 

𝛿𝑀 Decay rate of miRNA wk−1 4.8 (2.4-29.1) [20] 
aParameter value range used for GSA 

B. Model equations 

The various transport and pharmacodynamic processes 
described above have been formulated into a system of 
ordinary differential equations (ODEs; Eqs. 1–7) to 

numerically simulate a reference treatment protocol. We then 
used the model to further understand the role of different 
model parameters in governing NP and miRNA delivery, and 
treatment outcome.  

Equation for NP mass kinetics in plasma (𝑁𝑃(𝑡)): 

𝑑𝑁𝑃(𝑡)

𝑑𝑡
= (

𝑁𝑉(𝑡)

𝑉𝑇,𝑉
−

𝑁𝑃(𝑡)

𝑉𝑃
) ∙ 𝑄 ⋅ 𝐵(𝑡) − 𝑘Cl ⋅ 𝑁𝑃(𝑡),   

             𝑁𝑃(𝑡) = {
0, 𝑡 = 0
𝑁0, 𝑡 = 𝑖

  (1) 

where, 𝑉𝑇,𝑉 (= 𝑓𝑣 ∗ 𝐵(𝑡)) and 𝑉𝑃 (1 mL) [21] are volumes of 

tumor vascular and plasma compartments, respectively; 𝑓𝑣 (= 
0.17) is the vascular fraction of the tumor [14]; 𝑁0 is the 
injected dose of NPs and 𝑖 represents the injection times (in 
weeks) post inoculation of tumor in mice (𝑖 = 2, 3, 4, 5). 

Equation for NP mass kinetics in tumor vasculature (𝑁𝑉(𝑡)): 

𝑑𝑁𝑉(𝑡)

𝑑𝑡
= (

𝑁𝑃(𝑡)

𝑉𝑃
−

𝑁𝑉(𝑡)

𝑉𝑇,𝑉
) ∙ 𝑄 ⋅ 𝐵(𝑡) − 𝑃 ⋅ 𝑆 ⋅ 𝑁𝑉(𝑡),     

                 𝑁𝑉(0) = 0  (2) 

Equation for NP mass kinetics in tumor interstitium (𝑁𝐼(𝑡)): 

𝑑𝑁𝐼(𝑡)

𝑑𝑡
= 𝑃 ⋅ 𝑆 ⋅ 𝑁𝑉(𝑡) −

𝐷

𝐿2 ⋅ 𝑁𝐼(𝑡),    𝑁𝐼(0) = 0  (3) 

Equation for NP mass kinetics in cancer cell membrane 
(𝑁𝑀(𝑡)): 

𝑑𝑁𝑀(𝑡)

𝑑𝑡
=

𝐷

𝐿2 ⋅ 𝑁𝐼(𝑡) − 𝑘endo ∙ 𝑁𝑀(𝑡),   𝑁𝑀(0) = 0  (4) 

Equation for NP mass kinetics in cancer cell cytosol (𝑁𝐶(𝑡)): 

𝑑𝑁𝐶(𝑡)

𝑑𝑡
= 𝑘endo ∙ 𝑁𝑀(𝑡) − 𝛿NP ⋅ 𝑁𝐶(𝑡),  𝑁𝐶(0) = 0  (5) 

Equation for miRNA concentration kinetics in cancer cell 
cytosol (𝐶𝑀(𝑡)): 

𝑑𝐶𝑀(𝑡)

𝑑𝑡
= 𝑘rel ⋅

𝑁𝐶(𝑡)∙𝑀0∙𝑒−𝑘rel∙𝑡

𝑉𝑇,𝐶
− 𝛿𝑀 ⋅ 𝐶𝑀(𝑡),       

                 𝐶𝑀(0) = 0  (6) 

where 𝑀0 is the mass of miRNAs loaded in a single NP; 𝑉𝑇,𝐶  

is the cytosolic volume of tumor (= 𝑓𝑐 ∗ 𝑓cy ∗ 𝐵(𝑡)), where 

𝑓𝑐 (= 0.4) is the cancer cell volume fraction of a tumor [22] 
and 𝑓cy (= 0.4) is the cytoplasmic volume fraction of a cancer 

cell [23]. Note that the concentration of tumor suppressive 
miRNAs is downregulated in cancer; therefore, it is reasonable 
to assume its initial condition to be zero.  

Equation for tumor volume kinetics (𝐵(𝑡)):  

𝑑𝐵(𝑡)

𝑑𝑡
=

𝜎

1+
𝐶𝑀(𝑡)

EC50

∙ (1 −
𝐵(𝑡)

𝐵∗ ) ⋅ 𝐵(𝑡),    𝐵(0) = 𝐵0  (7) 

where 𝐵0 is the inoculated size of tumor (0.001 cm3 = 
106 cells) [24] and 𝐵∗ is the tumor carrying capacity (1 cm3).  

The model is solved numerically as an initial value problem in 
MATLAB R2018a using the built-in function ode45.  

C. Parametric and statistical analyses 

 To understand the effect of various delivery barriers, and 

physicochemical and physiological processes on NP-

mediated miRNA delivery to the tumor cytosolic space, 

which in turn affects tumor inhibition, we performed global 
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sensitivity analysis (GSA). In our analysis, a total of 11 model 

parameters were simultaneously perturbed from their baseline 

value (within a predefined physiological range, Table I). We 

focused on the following six model outputs of interest: 

AUC𝑃
NP, AUC𝑇,𝑉

NP , AUC𝑇,𝐼
NP, AUC𝑇,𝐶

NP , AUC𝑇,𝐶
𝑀 , and 𝑡90, which 

represent area under the curve (AUC) of NP mass kinetics in 

-plasma, -tumor vasculature, -tumor interstitium, -tumor 

cytosol, miRNA concentration kinetics in tumor cytosol, and 

time to reach 90% of carrying capacity, respectively. While 

AUCs are indicative of bioavailability of NPs or miRNA in a 

given compartment, 𝑡90 indicates inhibition of tumor 

proliferation. Note that AUC is calculated through numerical 

integration using the built-in MATLAB function trapz. To 

investigate the vast multidimensional parameter space, Latin 

hypercube sampling was used to obtain 11,000 sets of 

parameters, ten times. Each of the ten parameter batches and 

their corresponding model outputs was subject to multivariate 

linear regression analysis to obtain a distribution of regression 

coefficients for each parameter, which served as the 

sensitivity index (SI) to quantify the significance of the 

parameters in governing the model outputs. Finally, one-way 

ANOVA and Tukey’s test were conducted to rank the 

parameters in order of their SI value (higher the SI, the more 

sensitive the measured output is to changes in the parameter) 

[25-28]. All analyses were performed in MATLAB R2018a.  

III. RESULTS AND DISCUSSION 

Treatment simulation and global sensitivity analysis 

We used the model to simulate a literature-based treatment 

regimen of miRNA therapy [24], which involves a weekly IV 

injection of 0.15 mg∙kg-1 miRNA (equivalent to 4 g/mouse 

of miRNA) for 4 weeks, starting 2 weeks post tumor 

inoculation. Of note, the number of NPs (reference size: 70 

nm in diameter) required to load the reference dose of 4 µg 

miRNA is ~2.5e+10; this number was estimated based on NP 

volume, molecular weight of miRNA (~7kDa [29]), and the 

assumptions that the miRNA is a sphere of dia. ~2.5 nm [30] 

and packed randomly into a hollow NP with a packing 

efficiency of ~64% [31]. In our GSA, to simulate a different 

NP size (or miRNA dose) other than the reference value, we 

had to recalculate the number of NPs required to load a given 

dose. Also, to be consistent with other reports in the field, NP 

mass was represented by percent of injected dose (%ID), 

instead of actual number of NPs in a given compartment.  
As shown in Fig. 2, the numerical solution of the model, 

based on the reference parameter values (Table I and Methods) 
and the implemented treatment regimen, appropriately 
predicted the temporal evolution of NP mass in various model 
compartments (Fig. 2a-2d), miRNA concentration in cancer 
cell cytosol (Fig. 2e), and tumor size (Fig. 2f). Following each 
injection, NP kinetics in the plasma was primarily governed by 
clearance mechanisms, represented by the lumped 𝑘Cl 
parameter, leading to almost complete elimination of the 
injected dose within a week (Fig. 2a). Further substantiated by 
GSA (Fig. 3a), NP size (𝜙NP), which exerts its impact by 
modulating 𝑘Cl, was found to be the most significant parameter 

in affecting NP bioavailability in plasma (AUC𝑃
NP).  

From the systemic circulation, the blood flow-dependent 
delivery to tumor causes an incremental change in NP mass in 

tumor vasculature with every injection (Fig. 2b), which is 
attributable to incremental rise of NP mass with every 
injection in plasma compartment (Fig. 2a), due to the 
remaining residual of the previous injection (change 
conspicuous in logscale, not shown). Additionally, as shown 
in Fig. 3b, tumor growth rate constant 𝜎 is the most significant 
parameter in affecting NP bioavailability in tumor vasculature 

(AUC𝑇,𝑉
NP ), which suggests that due to the growing tumor the 

rate of influx of NPs into the tumor vasculature increases with 
time because the tumor vasculature volume increases in 
parallel with the tumor volume (first term of Eq. 2), thereby 
causing the increments.  

Further, NP mass kinetics in the tumor interstitium is 
coupled to tumor vascular kinetics (Fig. 2c), suggesting that 
permeation into or diffusion through the interstitium is not a 
rate limiting factor for the given baseline conditions of NP and 
tumor characteristics. However, as we identified through GSA 
(Fig.3c), 𝐿, 𝜂𝑇,𝐵 (tumor blood viscosity), 𝜂𝑇,𝐼, and 𝜙pore 

(tumor vessel wall pore size) are significant in affecting the NP 

bioavailability in tumor interstitium (AUC𝑇,𝐼
NP), which suggests 

that under a different set of parameter values (e.g., a 
hypovascular, or densely stromal, or tumor with smaller vessel 
wall pores, or larger NPs), we may observe decoupling from 
vascular kinetics that can make extravasation or interstitial 
diffusion a limiting factor in delivery to the cytosol.  

Similarly, endocytosis through the membrane, which is a 
relatively fast process depending upon NP size (𝜙NP), does not 
decouple from vascular kinetics in limiting delivery to the 
inside of the cell for the studied NP size (Fig. 2c). However, 
as shown in Fig. 3d, 𝜙NP is one of the most significant factors 

that affect the NP bioavailability in tumor cytosol (AUC𝑇,𝐶
NP ), in 

addition to the degradation rate of the NP (𝛿NP), suggesting 
that cytosolic accumulation of NPs is sensitive to their size and 
degradability. Moreover, as shown in Fig. 2d, the 
characteristics of the hypothetical NPs used in the simulations 
allow incremental accumulation of NPs in the cytosol with 
every injection, eventually surpassing the well-accepted 

Figure 2. Treatment simulation. Model predicted kinetics of NP mass (% 

injected dose (%ID)) in a) –plasma (left y-axis), b) –tumor vasculature, c) –

tumor interstitium (left y-axis), –cancer cell membrane (right y-axis), d) – 
tumor cytosol (left y-axis), e) miRNA concentration in tumor cytosol, and f) 

tumor volume is shown. Note: right y-axis in panel a) corresponds to NP 

elimination kinetics from plasma; black arrows on top of panel a) indicate the 
injection time-points; right y-axis in panel d) represents NP degradation 

kinetics in tumor cytosol; black line in panel e) indicates the reference EC50 

value of miRNA; and markers in panel f) indicate 90% of carrying capacity, 

such that the corresponding abscissas are the 𝑡90values.  
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median value (0.7 %ID) of NP accumulation in the tumor 
following a single injection [32].  

The NPs accumulated in the cytosol release miRNA into 
the cytosol, such that as shown in Fig. 3e, miRNA release rate 
(𝑘rel) is the most significant factor, followed by degradation 
rate of miRNA (𝛿𝑀), in governing miRNA bioavailability in 

tumor cytosol (AUC𝑇,𝐶
M ). The reference parameter values of the 

hypothetical miRNA used in the study allow attainment of 
miRNA concentration in the cytosol greater than the reference 
EC50 value required for therapeutic efficacy, throughout the 
duration of treatment (Fig. 2e). As a result, as shown in Fig. 
2f, following weekly injections of miRNA-loaded NPs, the 
tumor shows growth inhibition, resulting in a smaller size 
during the treatment timeframe in comparison to the control 
tumor. As observed, the treated tumor takes ~16 days longer 
to reach 90% carrying capacity (𝑡90 = 5.35 wks), with respect 
to the no-treatment scenario (𝑡90 = 3 wks). Note that 𝑡90 is only 
being used for the purpose of quantitative comparison and has 
no clinical relevance. However, post treatment termination, as 
the miRNA concentration falls below the effective threshold 
the treated tumor manages to reach the carrying capacity, 
equaling the untreated tumor in size. This can be attributed to 
the lack of a death mechanism in the logistic tumor growth 
model (Eq. 7). For simplicity, the model only contains a single 
mechanism of action via which the miRNA exhibits its effect, 
i.e., miRNA concentration-dependent suppression of tumor 
growth rate constant 𝜎, which is the most significant factor in 
affecting tumor growth (Fig. 3f). However, to allow the 
possibility of miRNA-induced or co-administered 
chemotherapeutic-induced death, future updates to the 
pharmacodynamic component of the model will be necessary.  

IV. CONCLUSION 

Using a simplified, multicompartment mechanistic model, 
we studied the pharmacokinetic and pharmacodynamic 
aspects of NP-mediated miRNA therapy for tumor inhibition, 
and also investigated the effects of simultaneous parameter 
perturbations (through GSA) on key model outputs, including 
the bioavailability of NPs in various compartments, the 
bioavailability of miRNAs in tumor cytosol, and the resulting 
therapeutic outcome of miRNA-induced tumor growth 
inhibition. In addition to the importance of NP size, through 

the analysis we were also able to identify the importance of 
miRNA release rate from NPs and degradability of NPs in 
governing cytosolic accumulation of miRNAs, which directly 
impact tumor growth based on the EC50 of a given miRNA. 
These tunable NP properties thus provide opportunities to 
optimize the drug delivery system for enhancing the efficacy 
of miRNA therapy. This model represents a first step towards 
a more complete mechanistic model that can account for 
additional NP characteristics (e.g., targeting to improve 
endocytosis) and also include specific molecular signaling 
pathways in the cytosolic compartment to better represent the 
mechanisms of action of miRNAs.  
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Figure 3. Global sensitivity analysis of model parameters for their effect on 

a) 𝐴𝑈𝐶𝑃
𝑁𝑃, b) 𝐴𝑈𝐶𝑇,𝑉

𝑁𝑃, c) 𝐴𝑈𝐶𝑇,𝐼
𝑁𝑃, d) 𝐴𝑈𝐶𝑇,𝐶

𝑁𝑃, e) 𝐴𝑈𝐶𝑇,𝐶
𝑀 , and f) 𝑡90. Violin 

plots show distribution of sensitivity index (SI) (or regression coefficients of 

MLRA) for each parameter. Blue asterisk indicates parameters that play a 

significant role in governing the corresponding model output, as identified 

through MLRA (𝑝 < 0.05). Note: parameters are arranged in decreasing 

order of sensitivity from left to right.     
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