
  

  

Abstract— A type 2 diabetes (T2D) simulator has been 

recently proposed for supporting drug development and 

treatment optimization. This tool consists of a physiological 

model of glucose/insulin/C-peptide dynamics and a virtual 

cohort of T2D subjects (i.e., random extractions of model 

parameterizations from a joint parameter distribution) well 

describing both average and variability realistic T2D dynamics . 

However, the state-of-art procedure to get a reliable virtual 

population requires some post-processing after subject 

extraction, in order to discard implausible behaviors. We 

propose an improved method for virtual subjects’ generation to 

overcome this burdensome task. To do so, we first assessed a 

refined joint parameter distribution, from which extracting a 

number of subjects, greater than the target population size. 

Then, target-size subsets are undersampled from the large 

cohort. The final virtual population is selected among the 

subsets as the one maximizing the similarity with T2D data and 

model parameter distribution, by means of measurement’ 

outcome metrics and Euclidian distance (𝚫), respectively. In the 

final population, almost all the outcome metrics are statistically 

identical to the clinical counterparts (p-value>0.05) and model 

parameters’ distribution differs by ~5-10% from that derived 

from data. The methodology described here is flexible , thus 

resulting suitable for different T2D stages and type 1 diabetes, 

as well.  

 
Clinical Relevance— A straightforward subjects’ generation 

would ease the availability of tailored in silico trials for testing 

diabetes treatment in a specific population. 

 

I. INTRODUCTION 

Diabetes treatments usually requires the administration 
of oral or injectable drugs. Testing new treatments and 
medications is often time-consuming and expensive. 
Moreover, sometimes it is not possible to perform an 
experiment on human subjects because it cannot be done at 
all, or it is too difficult, too dangerous, or unethical [1]. For 
these reasons, the application of computer simulation can 
assume an extremely important role. In particular, the so-
called “in silico clinical trials” represent a replacement of 
animal testing that, allowing testing several conditions in a 
cost-effective way, helps to cut the time and cost required to 
develop a medical product or a drug.  

Simulation in diabetes field started about 50 years ago, 
but in a first stage, they did not have a significant impact as 
they were based on average data [2]. A significant step 

 
R. Visentin, is with the Department of Information Engineering, 

University of Padova, Via G. Gradenigo 6/B, 35131 Padova, Italy (phone: 

+39 049 827 7636; fax: +39 049 827 7699; email: visentin@dei.unipd.it). 

Mattia De Lazzari is with the Department of Electrical Engineering, 

Chalmers University of Technology, Hörsalsvägen 11, 412 58, Göteborg, 

Sweden (email: lazzari@chalmers.se). 

forward was made in 2008 with the development of the 
UVA/Padova Type 1 diabetes (T1D) simulator [3]. The 
crucial innovation of this tool compared to the previous 
simulators was the availability of a cohort of virtual subjects 
well spanning the inter-individual variability of a real 
population. This tool has been constantly updated through 
the years [4], providing continuous support for testing 
artificial pancreas prototypes and, more recently, insulin 
molecules and glucose sensors. 

Recently, the same group proposed a type 2 diabetes 
(T2D) simulator [5] to support the research also for the most 
common form of diabetes disease. Similarly to T1D, the T2D 
simulator consists of a simulation model able to describe the 
dynamics of the glucose, insulin and C-peptide in T2D 
subjects, and a cohort of virtual subjects, representative of an 
early stage T2D population.  

In both T1D and T2D simulators, virtual subjects are 
meant as realizations of model parameters, which are 
randomly extracted from an appropriate joint parameter 
distribution, i.e., a mean vector and a covariance matrix 
calculated from the parameters estimated on real subjects. 
This procedure, already described in details in [4],[5], is 
rather articulated and, requires post-processing to obtain the 
final population: for example, outlier subjects with 
implausible dynamics have to be manually discarded; in 
addition, if the population does not fit the real average and 
variability in the data, a new set of subjects has to be 
generated.  

In order to improve this burdensome task, here we 
propose a novel procedure for the generation of in silico 
subjects, also evaluating possible refinements that can further 
increase virtual population reliability. The methodology, 
schematized in Fig. 1, is described in the following section. 
Here it is applied for generating subjects of the T2D 
simulator, however, it can be employed in T1D as well.  

II. METHODS 

A. The Padova T2D Simulator 

The Padova T2D simulator has been presented in early 
2020 [5]. It consists of a model of glucose, insulin and C-
peptide dynamics during a meal and a population of 100 in 
silico T2D subjects, spanning the inter-individual variability 
of a real T2D population.  

The simulation model shares the core structure proposed 
by Dalla Man et al. in 2007 [6], with slight modifications 
including a better description of glucose dynamics in 
hypoglycemia, a more physiological model of insulin kinetics 
[7], and models of C-peptide secretion and kinetics [8]. 

The 100 in silico T2D subjects are generated from an 
appropriate joint distribution of model parameters. More 
precisely, the simulation model has been decomposed in its 
single processes; each process has been identified on triple-
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tracer data of 51 T2D [9]-[11] and 204 healthy subject data 
[12], allowing a reliable estimation of all the model 
parameters, with which building up the joint parameter 
distribution; then, each in silico subject has been generated as 
a single realization of model parameters vector, randomly 
extracted from the joint distribution. For more details on the 
model structure and the process for generation of the in silico  

population we refer to [5].  

B. Database and protocols 

In this work, we used the same data employed for 
generating the virtual population of the T2D simulator [5]. 
Specifically, data come from two different groups of 
individuals, consisting of 51 T2D subjects (16 male, Age = 
54.6±8.5 years, H = 169±8 cm, W = 94.1±15.5 kg, BMI = 
33.1±5.5 kg/m2) [9]-[11] and 204 healthy subjects (117 
male, Age = 55.5±21.7 years, H = 171±10 cm, W = 78±13.3 
kg, BMI = 26.63±3.39 kg/m2) [12]. In both datasets, subjects 
underwent a triple-tracer mixed meal tolerance test with 
different carbohydrates content. This particular technique 
[13], allowed obtaining, beside sampled measurements of 
glucose, insulin and C-peptide concentrations, virtually 
model-independent estimates of metabolic fluxes, i.e., 
endogenous glucose production, meal glucose rate of 
appearance, and glucose utilization. More details on data and 
protocols are described in [9]-[13]. In addition to data time 
courses, parameter estimates were available for both T2D 
and healthy subjects, obtained by the identification of T2D 
simulation model, as described in [5].  

C. Development of Joint Parameter Distribution 

In the Padova T2D Simulator, each virtual subject is 
represented by a vector of model parameters, p: 

 𝒑 = [𝑝1 , 𝑝2 , . . . , 𝑝𝑁𝑝]
𝑇
  

randomly extracted from a joint parameter distribution 
characterized by a mean vector, 𝝁𝒑, and covariance matrix, 

𝚺𝒑. In particular, since model parameters follow a log-normal 

distribution, the i-th element in 𝝁𝒑 actually corresponds to the 

average of the log-transformed i-th parameter, while the 
generic element covpi,pj of 𝚺𝒑 represents the covariance 

between the logarithm of the two parameters pi and pj. At the 
state of art, 𝝁𝒑 was calculated using T2D parameters only [9]-

[11], while a hybrid 𝚺𝒑 was calculated using parameters of 

T2D [9]-[11] in combination with those of healthy subjects 
[12]. This was adopted in order to improve the robustness o f 
𝚺𝒑, as discussed in [5].  

An additional feature was considered here for possible 
improvement in joint parameter distribution, i.e., the 
precision of parameter estimates, available by model 
identification on T2D data [9]-[11], expressed by the 
coefficient of variation (CV). Specifically, a weight can be 

associated to a generic i-th parameter of subject k (pi
k): 

 𝑤𝑖
𝑘 =  

𝐶𝑉𝑖𝑚𝑖𝑛

𝐶𝑉𝑖
𝑘    

where CVimin is the minimum CV of the i-th parameter among 

all subjects. When accounting for this information, it is 
possible to determine a weighted 𝝁𝒑, in which the weighted 

average value for the a generic i-th parameter is: 

𝜇𝑖 =
∑ 𝑤𝑖

𝑘∙𝑝𝑖
𝑘

𝑘

∑ 𝑤𝑖
𝑘

𝑘
  

and the weighted covariance in Σp between two parameters, 
pi and pj of weights wi and wj, respectively, is calculated as 
follows: 

 𝑐𝑜𝑣𝑝𝑖,𝑝𝑗
= 𝜎𝑝𝑖

𝜎𝑝𝑗
𝑟𝑝𝑖,𝑝𝑗

=
∑ (𝑝𝑖

𝑘−𝜇𝑖)(𝑝𝑗
𝑘−𝜇𝑗)𝑘

√∑ 𝑤𝑖
𝑘𝑤𝑗

𝑘
𝑘

 (4)  

 
Fig. 1. Flowchart describing the process for generating the virtual 

population. A joint parameter distribution is computed from estimated 

parameters (possibly weighted) of real T2D and/or healthy subjects. An 

initial population, larger than the desired one, is then generated by 

randomly extracting different realizations of model parameter vector. Then, 

subsets of a desired number of subjects (e.g., N=100) are randomly 

extracted. The final population is selected as the subset that mostly 

represents the real population based on the similarity of both concentration 

time courses and parameter distribution. 
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where σpi
 and σp

j
are weighted standard deviation while rp

i
,p
j
 

is the weighted correlation between the two parameters. 

Hence, by calculating Σp from T2D only (Σ𝒑
𝐓𝟐𝐃) or 

hybrid (T2D and healthy) data (Σ𝒑
𝐇𝐲𝐛), and using whether 

weighted or unweighted information, we evaluated six 
different joint distributions:   

 prior 1: unweighted 𝝁𝒑 and Σ𝒑
𝐓𝟐𝐃; 

 prior 2: unweighted 𝝁𝒑 and Σ𝒑
𝐇𝐲𝐛; 

 prior 3: weighted 𝝁𝒑 and Σ𝒑
𝐓𝟐𝐃; 

 prior 4: weighted 𝝁𝒑 and Σ𝒑
𝐇𝐲𝐛; 

 prior 5: unweighted 𝝁𝒑 and weighted Σ𝒑
𝐓𝟐𝐃; 

 prior 6: unweighted 𝝁𝒑 and weighted Σ𝒑
𝐇𝐲𝐛. 

To note, prior 2 is the configuration currently 
implemented in the T2D simulator [5].  

D. Virtual population generation and assessment 

From each joint parameter distribution (prior 1 to 9), 
1500 subjects, more than the expected population size, were 
generated by randomly extracting different realizations of 
T2D model parameters (to note, the desired number of 
subjects composing the final virtual population (N=100) is 
obtained as detailed in the next section II-E). Subjects with 
Mahalanobis distance from the distribution higher than the 
95% were discarded, as done in [4],[5]. By adopting this 
strategy, six different virtual populations have been 
generated, each one consisting of a different number of 
subjects.  

E. Subjects selection and optimal population assessment 

Each subject of [9]-[11] was univocally associated to a 
certain class, based on the fact that its glucose (G), insulin 
(I), C-peptide (Cp) was lower (l) or greater (h) than the 
respective population average. As such, eight classes were 
possible, and their probability was calculated as 
P(Class i)=Ni/Ntot, with Ni the number of subjects belonging 
to the i-th Class and Ntot the total number of subjects:  

 Class 1: Gh-Iℎ-Cp
h
 → P(Class 1) = 0.10 (5 subjects) 

 Class 2: Gl-Ih-Cph → P(Class 2) = 0.04 (2 subjects) 

 Class 3: Gh-I𝑙-Cph → P(Class 3) = 0.25 (13 subjects) 

 Class 4: Gh-Ih-Cpl → P(Class 4) = 0      (none) 

 Class 5: Gh-Il-Cpl → P(Class 5) = 0.02 (1 subject) 

 Class 6: Gl-Il-Cph → P(Class 6) = 0.06 (3 subjects) 

 Class 7: Gl-Ih-Cpl → P(Class 7) = 0.25 (13 subjects) 

 Class 8: Gl-I𝑙-Cpl → P(Class 8) = 0.28 (14 subjects) 

For each of the six virtual cohorts, 10000 subsets were 
generated, each of them consisting of 100 subjects sampled 
from the large cohort assuming the same distribution among 
the eight classes described above (e.g., 6 subjects were 
sampled from those having glucose, insulin lower and C-
peptide greater than the respective average data).  

Among the 10000 subset generated from each prior, the 
one better matching the real population was determined in 
terms of both glucose, insulin, C-peptide concentrations and 
model parameters, as follows.  

For each subset, the 100 subjects underwent a 420-min 
scenario with 83.5 g of carbohydrates at time t = 0 min, i.e., 
the same experiment performed in real T2D subjects [9]-

[11]. The similarity between virtual subjects and real data 
was then evaluated based on plasma glucose, insulin, and C-
peptide time courses and the distribution of subjects’ model 
parameters. Simulated glucose, insulin and C-peptide were 
compared to real data in terms of FIT index: 

 𝐹𝐼𝑇 = 1 − √
∑ (𝑦𝑚𝑒𝑎𝑠(𝑡𝑘)−𝑦𝑠𝑖𝑚(𝑡𝑘))

2𝑁
𝑘=1

∑ (𝑦𝑚𝑒𝑎𝑠(𝑡𝑘)−𝑦)2𝑁
𝑘=1

   

where ysim, ymeas and y̅ are the simulated plasma 
concentration, the measured plasma concentration, and its 
mean value, respectively. For each subset, FIT was 
calculated with respect to three characteristic curves, i.e., a 
central one (mean) and lower and upper bound (mean ± 
standard deviation), for both glucose, insulin and C-peptide. 

For what concerns similarity of model parameters, for 
each subset, the a posteriori covariance matrix (𝚺𝒑

′ ) was 

calculated, and compared to that a priori (𝚺𝒑 - i.e., that used 

for subject generation) by calculating the Euclidian distance:  

Δ = |𝚺𝒑 − 𝚺𝒑
′ |   

 For sake of comparison, a vector of reference distances 
Δref has been considered, where the i-th element Δi is the 
Euclidean distance between the a priori covariance matrix 
and its “biased” version, calculated from the original 
parameter distribution affected by a random percent 
variation of i = 5, 10, 15, …, 100%. 

Finally, the optimal subset (SUBopt) was selected among 
the 10000s as the one maximizing the sum of FITs, 
subtracted Δ: 

 𝑆𝑈𝐵𝑜𝑝𝑡 = argmax[∑ (𝐹𝐼𝑇𝑛)9
𝑛=1 − Δ]   

Each of the six optimal subset was assessed by 
comparing simulated data against the available clinical data, 
in terms of concentration time courses, area under the 
concentration curve (AUC), maximum concentration (Cmax) 
and its time (Tmax). Statistical tests were performed to assess 
the statistical significance between outcomes calculated on 
real and simulated data. Normality of outcomes has been 
assessed with Lilliefors test. Statistical comparisons have 
been performed by unpaired two-sample t-test or Wilcoxon 
rank sum test, for normal or non-normal distributions, 
respectively, with significance level p = 0.05.   

III. RESULTS 

Among all the possible combinations, the 100 in silico 
subjects which better reflect the real population variability 
are obtained from T2D weighted covariance matrix and non-
weighted mean vector (prior 5). As shown, in Fig. 1, 
simulated glucose, insulin and C-peptide reproduce both 
average and variability observed in real subjects [9]-[11]. 
Distributions of the outcome metrics is reported in Table 1. 
Specifically, no statistically significant differences are 
reported in all the comparison except for glucose Tmax (p < 
0.01). Regarding the distribution of subjects’ model 
parameters, the a posteriori covariance matrix showed good 
similarity with that a priori: Δ = 0.4023, meaning a 
difference between 5-10% (Δ5 = 0.2574, Δ10 = 0.6896). 

Similarity was also higher, if compared to state-of-art Σ𝒑
𝐇𝐲𝐛 

configuration (prior 2, Δ = 0.4534) and its weighted version 
(prior 6, Δ = 1.5172).   
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IV. DISCUSSION  

We developed a novel method for generating in silico 

subjects to be included in the T2D simulator. In particular, 

two novelties are introduced with respect to the state-of-art 

method for subject generation [5]. First, the use of a refined 

a priori information, consisting of a mean vector and, 

especially, a covariance matrix calculated from weighted 

parameters of T2D data only. In particular, the use of only 

T2D parameters with their weights (calculated as function of 

estimated parameter coefficient of variation) provides a 

more robust covariance matrix than the hybrid one (i.e., that 

derived from both T2D and healthy data), even in its 

weighted form. Second, the selection of virtual subjects, 

which are randomly sampled from different classes related 

to their glucose insulin and C-peptide concentrations allow 

to properly cover the population variability observed in real 

subjects. In this regard, the in silico vs. in vivo comparison 

done by evaluating FIT index on average and boundary 

curves reduces post-processing to obtain the final 

population, like the manual discard of outliers.  

As shown in the previous section, the resulting optimal in 

silico population well agrees the T2D data. To note, glucose 

Tmax was significantly lower in silico than in vivo. However, 

it is worth noting that experimental glucose variations are 

quite contained in the [60-100] min time interval, so that 

small errors in glucose measurement may have a potential 

impact on evaluating the outcome. 

V. CONCLUSION 

The proposed method can effectively replace the current 

procedure for virtual subjects generation, simplifying the 

post-processing required to obtain a reliable population (i.e., 

representative of real subjects). This methodology can be 

also used for tuning the simulator to a desired target 

population (e.g. advanced-stage T2D, or T1D), thus enabling 

in silico testing for different forms of diabetes.  
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TABLE I. OUTCOMES METRICS  

 Clinical Simulated p-value 

 Glucose 

  AUC [104 mg/dl∙min] 6.98 ± 2.08 6.58 ± 1.64 N.S. 

  Cmax [mg/dl] 286 ± 59 279 ± 51 N.S. 

  Tmax [min] 91 ± 29 73 ± 15 <0.001 

 Insulin 

  AUC [104 pmol/l∙min] 7.96 ± 4.55 7.78 ± 3.79 N.S. 

  Cmax [pmol/l] 432 ± 249 402 ± 191 N.S. 

  Tmax [min] 128 ± 48 128 34 N.S. 

 C-peptide 

  AUC [105 pmol/l∙min] 7.42 ± 2.61 7.19 ± 2.46 N.S. 

  Cmax [pmol/l] 3155 ± 1083 2871 ± 1047 N.S. 

  Tmax [min] 158 (49) 152 (35) N.S. 

Distribution of glucose, insulin and C-peptide AUC, Cmax and Tmax calculated 

in clinical and simulated data. Values are reported as mean ± standard 

deviation (SD). Statistical p-vale is calculated by unpaired two-sample t-test 

or Wilcoxon rank sum test, for normal or non-normal distributions, 

respectively. 

 
Fig. 2. Glucose, insulin and C-peptide concentrations of 100 T2D subjects generated from weighted covariance matrix and non-weighted mean vector and 

triple variable classification. Time courses are reported as mean (dotted lines) ± standard deviation (shaded areas).  
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