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Abstract— Electroencephalogram (EEG)-based emotion
recognition has made great progress in recent years. The
current pipelines collect EEG training data in a long-time
calibration session for each new subject, which is time
consuming and user unfriendly. To reduce the time required
for the calibration session, there have been many studies using
domain adaptation (DA) approaches to transfer knowledge
from existing subjects (source domain) to the new subject
(target domain) for reducing the dependence on the calibration
session. Existing DA methods usually require substantial
unlabeled EEG data of the new subject. However, the real
scenario is that there are a small number of labeled samples
in the calibration session of the target. Motivated by this,
we introduce a novel domain adaptation architecture based
on adversarial training to learn domain-invariant feature
representations across subjects. To improve the performance
when there are few labeled EEG data in the calibration
session, we add a soft label loss to the architecture, which
can ensure that the inter-class relationships learned from the
source domain are transferred to target domain. We evaluate
the method on the SEED dataset, and the experimental results
show that our method uses only 15 examples per trial in the
calibration session to achieve an average accuracy of 87.28%,
indicating the effectiveness of our framework.

I. INTRODUCTION

An increasing number of studies have shown that cogni-
tive and emotional disorders could result in many diseases,
including depression, autism and Alzheimer’s disease [1].
With this concern, the study of human emotion is of great
significance and become one of the research hotspots. The
electroencephalogram (EEG) signal has been proven to be
a useful tool for emotion recognition in the recent several
years due to its outstanding characteristics of high time
resolution and fast transmission speed. And then it provides
constructive technical supports for establishing real-time
emotion recognition systems [2].

The EEG-based BCI is the most popular type of BCIs
because of its safety, low cost and convenience [3]. The
procedure of EGG-based emotion recognition consists of the
following components: (a) Signal acquisition. We use dry
electrodes to collect EEG signals from the scalp. (b) Signal
processing. This step mainly involves temporal filtering and
spatial filtering. The purpose is to reduce noise and improve
the signal-to-noise ratio. (c) Feature extraction. There are
many ways to extract features of the processed signals, and
the EEG-based emotion recognition usually use the time
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or frequency domain features. (d) Pattern recognition. We
select the corresponding method according to the application.
When we use deep learning for emotion recognition, both the
feature extraction and pattern recognition could be integrated
into a single model, and then optimized simultaneously and
automatically.

Domain adaptation (DA) is a particularly promising
method for emotion recognition tasks. Unlike supervised
learning, DA transfers the knowledge from similar or relevant
subjects to facilitate learning for a new subject. In domain
adaptation, the source and target domains all share the same
feature space but have different marginal probability distri-
butions. There have been many studies about using the DA
method for EEG-based emotion recognition. For example,
Zheng et al. [4] first introduced the transfer component
analysis (TCA) [5] and transductive parameter transfer (TPT)
[6] for EEG-based cross-subject emotion recognition, and
achieved the accuracy of 64.00% and 75.17% respectively.
As domain adaptation based on deep neural network becomes
increasingly popular, Li et al. [7] proposed the domain
adversarial neural network (DANN) [8] to find the shared
representations between source and target domain. Espe-
cially, the domain adaptation network (DAN) [9] pushed the
accuracy up to 83.81%. Nevertheless, no matter how those
methods achieve knowledge transfer, most of them demand
the all target information, which is applicable to the offline
datasets transfer, but cannot be reached in real-time BCI
applications. Li et al. [10] noticed that current methods are
limited by the number of labeled examples in training data,
and proposed the Fast Online Instance Transfer (FOIT) to
improve the accuracy of EEG-based emotion recognition.
Zhao et al. [11] proposed a plug-and-play domain adaptation
(PPDA) method for dealing with the inter-subject variability.
However, although they reduce the calibration time, it brings
the disadvantage of reducing recognition accuracy.

To tackle the problem, inspired by the work [12], this
paper introduces a new method that can calibrate with a
few labeled target data without sacrificing the recognition
accuracy, which is outlined in Fig. 1. We divide the EEG
representations of target domain into calibration session and
inference session. The calibration session contains the first
several trials for the target subject while the inference session
consists of the rest of trials. We use the source domain data
and a few examples sampled from calibration session to
train the model, and the inference session is used to test the
performance of our model. In the training phase, the domain
confusion loss seeks to learn domain-invariant representa-
tions with respectively to the shift between different domains,
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Fig. 1. The architecture of our proposed architecture. The shared encoder is a multi-layer perceptron (MLP). The domain confusion loss and domain
classifier loss are used to learn a domain invariant representation over the source data and target data (both labeled and unlabeled). At the same time, The
soft label loss is applied to transfer inter-class correlations knowledge from source domain to target domain.

while the domain classifier loss is used to contest with the
domain confusion loss, and distinguish which domain the
example comes from. Most of current domain adaptation
methods only consider the marginal distribution information,
and ignore the label distribution information between source
and target domain. Since the label distribution holds key
information about the relationships between categories, we
add a soft label loss to our objective so as to transfer inter-
class correlations knowledge from source domain to target
domain.

II. METHOD

The architecture of our network is depicted in Fig. 1. The
network takes as input the source data {xs, ys}n1 (blue one
in Fig. 1) and the target data {xt, yt}m1 (green one in Fig.
1), where yt are only provided for a small number of target
data. The goal is to seek a label classifier θcls that could
correctly classify target examples by operating on an EEG
feature representation f(x; θmlp).

Usually, the loss function of classification task is the cross
entropy between the output predicted labels and ground-truth
labels of examples, which can be defined as follows:

Lcls(xs, ys, xt, yt; θmlp, θcls) = −
∑
k

1[y = k] log pk, (1)

where k is the ground truth label of corresponding example,
and p is the softmax of the label classifier activation: p =
softmax(θcls · f(x; θmlp)). The available source labeled
data are used to train the shared encoder and label classifier
parameters according to (1), yet it often result in overfitting
to the source data in domain adaptation. However, if the
source domain and target domain are similar enough that the
classifier trained on the source will perform well on the target
domain. Actually, under the learned representation θmlp, it
is possible for both source and target domain data to be

very similar. To address the problem, we add an additional
domain classifier with parameters θdom, and directly train
the domain classifier to identify whether a training example
comes from source domain or target domain. Furthermore,
in order to minimize the difference between the source and
target data distribution, we also add a new loss Lconf , called
domain confusion loss, to the subjective by optimizing the
representation θmlp.

Then for a particularly feature representation θmlp, we
seek to learn the best domain classifier on the representation
by optimizing the following objective:

Ldom(xs, xt, θmlp; θdom) = −
∑
d

1[yd = d] log qd, (2)

where yd denotes the domain that the example is originated
from, and q corresponding to the softmax of the domain
classifier activation: q = softmax(θdom · f(x; θmlp)). For a
particularly domain classifier θdom, the domain confusion
loss is introduced to learn domain invariant by finding a
representation in which the best domain classifier performs
poorly. This can be formulated as:

Lconf (xs, xt, θdom; θmlp) = −
∑
d

1

|D|
log qd, (3)

where |D| represents the number of domain. Since both two
loss functions are completely opposite to each other, we use
iterative update strategy to optimize the two objectives by
fixing parameters from the previous iteration.

Though training the network to confuse the domain clas-
sifier acts to align the marginal distribution, there are no
gurantees about the alignment of corresponding classes be-
tween source and target domain. To deal with the issue, we
use a new label, called soft label, which is the average over a
softmax with a high temperature τ of all activation of source
examples, rather than the EEG data category hard label. We
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denote the average as l(k) corresponding to the category k.
Now, we can define the soft label loss as:

Lsoft(xt, yt; θmlp, θcls) = −
∑

l(yt) � log p, (4)

where the symbol � represents element-wise product, and
p denotes the soft activation of the target labeled data:
p = softmax(θcls · f(xT ; θmlp)/τ). By optimizing the loss
function to match the expected source output distributions
on the target data, we can transfer the learned inter-class
correlations from the source domain to examples in the target
domain.

To sum up, we firstly minimize the domain classifier loss
to update the parameter θdom only:

min
θdom
Ldom(xs, xt, θmlp; θdom), (5)

and then optimize the joint loss function to get the better
feature representation and label classifier:

min
θcls,θmlp

Lcls(x, y; θmlp, θcls) + αLconf (xs, xt, θdom; θmlp)

+βLsoft(xt, yt; θmlp, θcls), (6)

where α and β are the hyperparameters, which determine
how strongly domain confusion and soft label influence the
optimization. We can get the optimal representation param-
eters θ∗mlp and label classifier parameters θ∗cls by repeating
the above procedure.

III. EXPERIMENTS
To analyze the effectiveness of our method, we use leave-

one-subejct-out cross valudation to evaluate the approach
on the SJTU Emotion EEG Dataset (SEED) [13], a dataset
collection for various purposes using EEG signals. In the
dataset, there are 15 Chinese movie clips to be used to
elicit the desired target emotion among positive, negative and
neutral. Fifteen subjects (7 males and 8 females) participated
in the experiment three times on the different days. The
experimental procedures involving human subjects described
in this paper were approved by the Institutional Review
Board.

A. Implementation Details

For each file (.mat) in this dataset, there are 15 trials and
each trial consists of PSD, DE, DASM, RASM and DCAU
features. The extracted differential entropy (DE) features of
EEG signals are used to train the network. For each target
subject, we divide the EEG representations into calibration
session and inference session. We evaluate the performance
under different four partitions of target domain: (1) the
calibration consists of first 3 trials, (2) the calibration consists
of first 6 trials, (3) the calibration consists of first 9 trials,
(4) the calibration consists of first 12 trials. We follow the
standard protocol for this dataset and sample 15 examples
per trial in the calibration session. We use those examples
and the rest of fourteen subjects as training data, and the
inference session as testing data.

For our implementation of the model, we use a four-layer
multi-layer perceptron of 512, 128, 128 and 64 hidden nodes

TABLE I
EXPERIMENTAL RESULTS OF DIFFERENT METHODS RUNNING ON THE

SEED DATASET.

Method Avg. Std.

TCA[4] 64.00 14.66
TPT[4] 75.17 12.83
DANN[7] 79.19 13.14
DAN[7] 83.81 8.56
WGANDA[11] 87.10 7.10
PPDA[11] 86.70 7.10
Ours 87.28 5.75

TABLE II
EXPERIMENTAL RESULTS ON THE SEED DATASET. MAXIMUM VALUE

FOR EACH TASK IS BOLDED.

Method FOIT[10] Ours5 Ours6 Ours7

3L-12U1 69.55±18.04 85.21±9.19 84.67±5.60 87.28±5.75
6L-9U2 80.61±10.80 88.73±7.09 89.42±6.91 91.02±6.19
9L-6U3 81.75±11.71 93.81±5.37 94.24±5.10 92.07±5.74
12L-3U4 86.54±11.56 91.46±9.64 90.43±10.57 91.77±9.01
1 3 labeled trials and 12 unlabeled trials
2 6 labeled trials and 9 unlabeled trials
3 9 labeled trials and 6 unlabeled trials
4 12 labeled trials and 3 unlabeled trials
5 domain confusion loss only
6 soft label loss only
7 both domain confusion loss and soft label loss

respectively, with batch normalization and rectified linear
units (ReLU) between each layer, and a domain classifier and
label classifier following the output of multi-layer perceptron.
The both two classifiers are linear layers whose nodes are
2 and 3 respectively. We also add L2 regularization and
Dropout [14] to the model for avoiding the overfitting. The
whole model parameters are updated using SGD with a
learning rate of 0.001. The networks are trained with a mini-
batch of 15 examples at every epoch, and tested with the
unlabeled target domain data every 5 epochs. The hyper-
parameters α and β are set to 0.01, 0.1 respectively. To allow
for reproducible comparison, our results are reported over a
random seeds. The main results are presented in Table I,
and the results of ablation experiment are shown in Table
II. In order to investigate the effect of the number labeled
examples per target trial on our method, we also depict the
accuracy with respect to the increase of labeled data amount
in Fig. 2.

B. Results and Discussion

To demonstrate the advantages of our method, we compare
the performance with that of several popular methods on the
cross-subject emotion recognition task on SEED, and report
the average classification accuracy in Table I. As is shown,
the proposed approach outperforms all other algorithms.
From the experimental results, we have the following obser-
vations. Compared with WGANDA and PPDA respectively,
our method could achieve an better accuracy of recogni-
tion, which demonstrates that our proposed architecture is
capable of learning domain-invariant features. For further
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Fig. 2. Performance of our model with varying numbers of labeled target
examples per trial.

verifying the effectiveness of soft label loss, we compare
the performance of two variants of the proposed method: (1)
using domain confusion loss only. (2) using soft label loss
only. The average results on SEED are reported in Table
II. From the results, our method (both domain confusion
loss and soft label loss) achieves the highest classification
accuracy among all variations. It indicates that it is not
enough to only learn domain invariance, and simultaneously
considering the relationships between classes in both source
and target domain can achieve better performance.

The purpose of using calibration session is to enhance
the model performance by directly transferring inter-class
information from source to target. However, it is hard to
know how many labeled target examples per trial is optimal.
In order to find the appropriate number of labeled examples
per trial in target domain, we depict the accuracy change
of all methods with respect to the increase of labeled target
examples in Fig. 2. As presented in Fig. 2, the performance of
our model will increase with the extension of labeled target
examples. However, we do not see a significant improvement
of accuracy with the number of labeled target examples
becomes larger. While the FOIT is the opposite of our
method, its performance will decrease as the number of
labeled target examples becomes larger. We compare our
method with the FOIT, we can find that the most benefit
of our method arises when there are a few labeled training
examples per trial in the calibration session. In other words,
our model can get the best with fifteen examples per trial
in the calibration session when considering sparsely labeled
target domain data.

IV. CONCLUSIONS

In this paper, we propose a novel domain adaptation
architecture based on adversarial learning to extract domain-
invariant features for cross-subject EEG-based emotion
recognition. Different from other EEG classification meth-
ods, our approach exploits inter-class correlations from the
source domain because it has key information about the re-

lationships between categories. Moreover, since our method
is suitable for solving the problem of a small amount of
labeled EEG data in the target domain, in order to explore
the appropriate number of labeled example for our method,
we investigate the performance of the method with varying
numbers of labeled target examples, and find that 15 labeled
samples are the most suitable for our method. Finally, the
experimental results show that the method can manage to
decrease the number of labeled examples in target domain
with the best accuracy about 87.28%, a comparable result to
the state-of-the-art emotion recognition performance.
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