
  

 

Abstract— Alzheimer's disease (AD) is a common brain 

disease in the elderly that leads to thinking, memory, and 

behavior disorders. As the population ages, the proportion of 

AD patients is also increasing. Accordingly, computer-aided 

diagnosis of AD attracts more and more attention recently. In 

this paper, we propose a novel model combining latent space 

learning and feature learning using features extracted from 

multiple templates for AD multi-classification. Specifically, 

latent space learning is employed to obtain the 

inter-relationship between multiple templates, and feature 

learning is performed to explore the intrinsic relation in feature 

space. Finally, the most discriminative features are selected to 

boost the multi-classification performance. Our proposed model 

uses the data from the Alzheimer's disease neuroimaging 

initiative dataset. Furthermore, a series of comparative 

experiments indicate that our proposed model is quite 

competitive. 
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I. INTRODUCTION 

Alzheimer's disease (AD) is a common neurodegenerative 
disease in the elderly, which deteriorates over time and 
progresses slowly [1]. According to the severity of the disease, 
the progression of AD can be divided into three phases 
including normal control (NC), mild cognitive impairment 
(MCI), and AD [2]. Besides, MCI can be further divided into 
two phases, stable MCI (sMCI) and progressive MCI (pMCI), 
according to whether the patient can progress to AD in 18 
months [2]. It is known that the early diagnosis of AD can help 
to slow down the progression by monitoring the 
corresponding stage. Meanwhile, the proportion of AD 
patients is also increasing as the population ages. Therefore, 
computer-aided diagnosis (CAD) of AD in the early stage has 
attracted more and more attention recently. 
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Many machine learning methods have been proposed for 
early AD identification [3]. They mainly focus on the analysis 
of magnetic resonance imaging (MRI) data, which can provide 
structural information of the human brain. However, 
conventional methods typically extract features by a single 
regions-of-interest (ROI) template [3, 4], which is pre-defined 
to divide the brain into regions. It was proved that using 
multiple ROI templates to extract multiple sets of features 
from MRI images can capture richer brain structural 
information of abnormal brain regions, which is more 
prospective to compare group differences and reveal disease 
conditions [5, 6]. 

However, the features extracted from neuroimaging data 
using multiple ROI templates are inherently high-dimensional. 
To reduce the dimensions of feature space and learn more 
complementary structural information, the inter-relationship 
between different ROI templates can be considered rather than 
simply concatenating multiple sets of features together [3]. 
For example, Chen et al. [7] built a multi-task framework to 
capture the underlying relationship between multi-template 
features by regarding each set of features as a task. Moreover, 
as the sample size is limited, the overfitting problem is a 
serious challenge for AD multi-classification. Accordingly, 
the intrinsic relationship within feature space should be 
explored as well. Subspace learning has been employed to 
discover the inner relation within feature space such as locally 
preserving projections (LPP) [8] and linear discriminative 
analysis [9]. Also, sparse learning sets the weight of 
unimportant features to zero to select informative features by 
exploring the relation within features space. For example, Nie 
et al. [10] used an l2,1-norm to discard the redundant features. 

In this article, we propose a novel model integrating latent 
space learning and feature learning using multi-template 
features for AD multi-classification. Specifically, we suppose 
that a latent space exists for multi-template features so that we 
can project them to this space. In this way, features from 
different ROI templates can reflect different attribute 
information. The common latent space will model the 
inter-relationship between different templates and preserve the 
complementary structural information. Furthermore, the 
dimensions of feature space become lower after latent space 
learning, which is equivalent to a dimensionality reduction 
operation. After obtaining the common latent space, feature 
learning that combines LPP and l21-norm is performed to this 
common space to explore the intrinsic relationship and select 
the most discriminative features. Specifically, LPP is 
performed to retain the intrinsic connection within features, 
and l2,1-norm can make the weight matrix sparse to discard 
unimportant features. After feature learning, the most 
discriminative features are selected to feed into the classifier 
for prediction. Finally, data from the Alzheimer’s Disease 
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Fig. 1. Overview of our proposed model. We assume that K templates exist. 𝐗𝑘 ∈ ℝ𝑛×𝑑 represents the features extracted from k-th template. 𝐏𝑘 ∈ ℝ𝑑×𝑚 

represents the project matrix corresponding to 𝐗𝑘. 

Neuroimaging Initiative (ADNI) database is used to evaluate 
our proposed model, and the results of comparison 
experiments prove its competitiveness and superiority. 

II. METHOD 

The target of our proposed model is to select the most 

informative features from high-dimensional multi- template 

features, thereby improving the multi-classification 

performance. First, we use multiple ROI templates to extract 

multi-template features from the original MRI data. Then, the 

proposed method is used to identify the most informative 

features from multi-template features. Finally, these selected 

features concatenated with clinical scores of patients are 

transferred into the support vector machine (SVM) classifier 

to classify the subjects into different groups. The overview of 

our proposed model is displayed in Fig. 1. 

A. Proposed Method 

We assume that K ROI templates are used in our model. 
The features extracted from k-th template are referred as 𝐗𝑘 ∈
ℝ𝑛×𝑑 and the corresponding label matrix is denoted as 𝐘 ∈
ℝ𝑛×𝑐 , where d, n, and c indicate the number of feature 
dimensions, samples, and classes, respectively. We suppose a 
latent space exists for multi-template features so that these 
features can be projected into the space. Accordingly, a 

project matrix 𝐏𝑘 ∈ ℝ𝑑×𝑚  is defined to project 𝐗𝑘  to the 
common latent space 𝐌 ∈ ℝ𝑛×𝑚 , where m represents the 
dimensions of the latent space. We formulate the following 
formula to obtain the project matrices. 

 min
𝐏𝑘,𝐌

∑ ‖𝐗𝑘𝐏𝑘 − 𝐌‖F
2𝐾

𝑘=1 + ∑ ‖𝐏𝑘‖2,1
𝐾
𝑘=1 , 

where ‖𝐀‖𝐹 = √∑ ‖𝐀𝑖‖2
2

𝑖  is denoted as the Frobenius norm 

of the matrix A. Besides, the l2,1-norm, ‖𝐀‖2,1 = ∑ ‖𝐀‖2𝑖 =

∑ √∑ 𝑎𝑖,𝑗
2

𝑗𝑖 , is performed on the project matrices to pick out 

the most informative features of each template. Considering 
the inter-relationship between multi-template features, we use 
different project matrices for each template to obtain the 
common latent space. Also, after projecting to the latent space, 
the dimensions of feature space are reduced and the 
unimportant features in each set of features are discarded, 

which can alleviate the overfitting issue and preserve the 
complementary structural information. 

After obtaining the common latent space, it can be used as 
feature space to fit the target matrix by linear regression model 
𝐘 = 𝐌𝐖, where 𝐖 ∈ ℝ𝑚×𝑐 is the weight coefficient matrix. 
Then we can obtain W by minimizing the formula as follow. 

 min
𝐖

‖𝐘 − 𝐌𝐖‖𝐹
2 . 

However, Eq. (2) is a simple linear regression model 
without any feature selection methods, which will cause poor 
classification performance. Although the overfitting issue is 
alleviated using latent space learning, there are still redundant 
features in the latent common space. Hence, we further 
explore the intrinsic relationship within the latent space to 
select the most discriminative features. First, we apply the 
l2,1-norm on the weight coefficient matrix to make the latent 
space sparse. The l2,1-norm first sums the l2-norm of each row 
of the weight matrix and then performs l1-norm on it. The 
l1-norm is powerful to make a matrix sparse, and the l2-norm 
can prevent overfitting and improve the generalization ability 
of the model. Thus, the l2,1-norm can filter the uninformative 
features by setting the rows of 𝐖  to be zero. Then the 
objective function is formulated as 

 min
𝐖

‖𝐘 − 𝐌𝐖‖𝐹
2 + 𝜆1‖𝐖‖2,1, 

where 𝜆1 is the hyper-parameter controlling the regularization 
term on 𝐖 . Additionally, we can further investigate the 
intrinsic relationship within latent space by LPP, which is 
employed to preserve the local relationship within feature 
space. In LPP, it first constructs a neighborhood graph for data 
using k-nearest neighbor and then uses a heat kernel function 
to compute the similarity matrix 𝐒 ∈ ℝ𝑚×𝑚 . Coupling the 
l2,1-norm and the LPP, we obtain the objective function as 

min 
𝐖

‖𝐘 − 𝐌𝐖‖𝐹
2 + 𝜆1‖𝐖‖2,1 +

 𝜆2𝑡𝑟 (∑ (𝐖𝑻𝐦𝑖 − 𝐖𝑻𝐦𝑗)
𝟐

𝑖,𝑗 𝑠𝑖,𝑗) 

where 𝜆1 and 𝜆2 are penalty factors controlling the l2,1-norm 
and the LPP. 
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To fully explore the inter-relationship between different 
templates and the intrinsic relationship within feature space, 
we integrate latent space learning and feature learning into our 
proposed model to select the most discriminative features 
from multi-template features. By combining Eq. (1) and Eq. 
(4), we obtain the final objective function as follow 

min
𝐖,𝐌,𝐏𝑘

‖𝐘 − 𝐌𝐖‖𝐹
2 + 𝜆1𝑡𝑟 (∑ (𝐖𝑻𝐦𝑖 − 𝐖𝑻𝐦𝑗)

𝟐
𝑖,𝑗 𝑠𝑖,𝑗) +  

 𝜆2‖𝐖‖2,1 + 𝜆3 ∑ ‖𝐗𝑘𝐏𝑘 − 𝐌‖F
2𝐾

𝑘=1 + 𝜆4 ∑ ‖𝐏𝑘‖2,1.𝐾
𝑘=1  

After selecting the most relevant features by Eq. (5), the 
selected features concatenated with the clinical scores are fed 
into the SVM classifier to identify multi-stages of AD. 

D. Optimization 

In the final objective function, three variables need to be 
optimized. Therefore, the alternating update method can be 
used to effectively converge the objective function. We iterate 
the following three steps to solve Eq. (5): (1) fix M and 𝐏𝑘 to 
update 𝐖; (2) fix M and 𝐖 to update 𝐏𝑘; (3) fix 𝐏𝑘 and 𝐖 to 
update M. 

With fixing M and 𝐏𝑘 , the objective function can be 
formulated as 

min
𝐖

‖𝐘 − 𝐌𝐖‖𝐹
2 + 𝜆1𝑡𝑟 (∑ (𝐖𝑻𝐦𝑖 − 𝐖𝑻𝐦𝑗)

𝟐
𝑖,𝑗 𝑠𝑖,𝑗)  

 +𝜆2‖𝐖‖2,1. 

Since Eq. (6) is convex but non-smooth, we cannot 
directly take the derivative of this formula to obtain the 
solution of 𝐖 . According to [8, 11], we employ a new 
accelerated proximal gradient method to solve it. First, we 
redefine Eq. (6) as  

 𝜥(𝐖) = ‖𝐘 − 𝐌𝐖‖𝐹
2 + 𝜆1𝑡𝑟 (∑ (𝐖𝑻𝐦𝑖 − 𝐖𝑻𝐦𝑗)

𝟐
𝒊,𝒋 𝑠𝑖,𝑗), 

 𝜱(𝐖) = 𝜥(𝐖) + 𝜆2‖𝐖‖2,1. 

Then, we can optimize 𝐖  with the proximal gradient 
method to find a closed-form solution of 𝐖. 

With fixing M and 𝐖, we can formulate the objective 
function as 

 min
𝐏𝑘

𝜆3 ∑ ‖𝐗𝑘𝐏𝑘 − 𝐌‖F
2𝐾

𝑘=1 + 𝜆4 ∑ ‖𝐏𝑘‖2,1
𝐾
𝑘=1 . 

We can observe that Eq. (9) is similar to Eq. (6). 
Consequently, the same method can be employed to optimize 
Eq. (9). Then, we can obtain the solution of 𝐏𝑘. 

With fixing 𝐏𝑘  and 𝐖, we can formulate the objective 
function as 

min
𝐖

‖𝐘 − 𝐌𝐖‖𝐹
2 + 𝜆1𝑡𝑟 (∑ (𝐖𝑻𝐦𝑖 − 𝐖𝑻𝐦𝑗)

𝟐
𝑖,𝑗 𝑠𝑖,𝑗)  

 +𝜆3 ∑ ‖𝐗𝑘𝐏𝑘 − 𝐌‖F
2𝐾

𝑘=1 . 

We take the derivative of this formula and make it equal to 
zero to obtain the solution of 𝐌. 

Accordingly, we alternately update the values of 𝐖, M 

and 𝐏𝑘 , and the objective function will finally converge to 
obtain the optimal 𝐖, M and 𝐏𝑘. Then, we can use the optimal 
𝐖 to select the most discriminative features, which leads to 
the superior performance of multi-classification. 

III. EXPERIMENTS 

A.  Experiment Setting 

According to different phases of AD, we set two 
multi-classification tasks in our experiments, including NC vs. 
MCI vs. AD denoted as AD3, and NC vs. sMCI vs. pMCI vs. 
AD denoted as AD4. In our objective function, we have four 
penalty factors, which are 𝜆1 , 𝜆2 , 𝜆3  and 𝜆4 . We find the 
optimal value using the grid searching strategy. Different 
metrics, including accuracy (ACC), sensitivity (SEN), 
precision (PREC), and F1-score, are used to evaluate our 
multi- classification performance. To verify the effectiveness 
of our method, we use a 10-fold cross-validation strategy in 
our experiments. 

B. Data and Preprocessing 

In this article, we use MRI data from the ADNI dataset 
(https://www.loni.usc.edu/). 814 subjects including 220 NC, 
402 MCI, and 192 AD subjects are collected for the AD3 task. 
Furthermore, 402 MCI subjects can be divided into 256 sMCI 
subjects and 146 pMCI subjects for the AD4 task. Also, we 
collect mini-mental state examination (MMSE) scores as the 
clinical scores from ADNI as features. The experimental 
procedures involving human subjects described in this paper 
were approved by the Institutional Review Board. 

After collecting original MRI data from the ADNI dataset, 
the anterior commissure-posterior commissure correction and 
skull-stripping [12] are first performed on each image for the 
next precise segmentation. Then, we use the statistical 
parametric mapping toolbox [13] to segment these images into 
the cerebrospinal fluid (CSF), gray matter (GM), and white 
matter (WM), which are remarkable tissues in the brain 
images and widely used in other researches. Finally, we use 
three ROI templates, including automatic anatomical labeling 
(AAL) atlases [14] and Craddock’s spatially constrained 
spectral clustering atlas [15], to divide 90, 116, and 200 ROIs 
for CSF, GM, and WM, respectively, and then the mean tissue 
density value of each ROI can be computed as features. 

C. Experimental Results 

In this article, we set a series of comparison experiments 
with several methods to evaluate the superiority of our 
proposed methods such as Lasso [16], M3T [17], LRpL1 [18], 
SLRL [19], TMSLRL [7]. These methods are all used for 
feature selection and use the same SVM classifier with the 
RBF kernel. The detailed results of comparative experiments 
are listed in Tables I and II. We can observe that the results of 
our proposed model can get better results than other 
competitive models in all evaluation metrics and all 
classification tasks. Moreover, we add all confusion matrices 
of 10-fold cross-validation experiments together and plot them 
in Fig. 2. We can observe that our proposed model is more 
effective mainly due to the powerful ability of identifying 
MCI, sMCI, and pMCI. 

The top ten brain regions related to AD obtained by the 
optimal weight matrix of our proposed method for two 
multi-classification tasks are visualized in Fig. 3, which may 
assist researchers to further study AD in the future. We can see 
that the brain areas obtained by the two tasks show no obvious 
difference, which is a reasonable result. 
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TABLE I.  THE RESULTS OF AD3 (MEANSTANDARD DEVIATION). 

Method ACC SEN PREC F1-score 

LASSO 70.50±5.27 67.81±6.25 73.35±5.48 70.38±5.34 

M3T 70.88±5.22 68.15±5.53 73.97±5.77 70.84±4.91 

SLRL 75.30±4.38 73.89±4.74 78.09±5.44 75.83±4.15 

LRpL1 74.93±5.6 73.33±5.85 77.21±5.75 75.17±5.44 

TMSLRL 75.30±5.64 73.21±6.32 78.29±5.21 75.6±5.44 

Ours 81.07±4.71 79.01±6.04 84.11±3.67 81.41±4.49 

 
TABLE II.  THE RESULTS OF AD4 (MEANSTANDARD DEVIATION). 

Method ACC SEN PREC F1-score 

LASSO 60.19±2.55 56.50±2.99 55.36±5.57 55.82±3.80 

M3T 59.58±2.91 55.42±3.31 55.41±8.36 55.25±5.31 

SLRL 59.82±3.15 56.05±3.32 57.8±9.94 56.67±6.0 

LRpL1 63.01±5.26 58.69±5.77 56.06±10.93 57.08±7.64 

TMSLRL 63.99±4.22 59.64±3.61 60.42±9.83 59.8±6.08 

Ours 65.23±4.04 62.29±3.49 61.52±11.74 61.49±7.07 
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Fig. 2. The confusion matrices of comparative experiments. 
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Fig. 3. The top ten ROIs related to AD obtained by the optimal weight 
matrix of our proposed method. 

IV. CONCLUSION 

In this paper, we propose a multi-classification model 
combining latent space learning and feature learning to select 
informative features from multi-template features. With 
selected features, the SVM classifier is used to conduct 
multi-classification of AD. Specifically, we first extract the 
interrelationship between different templates to the common 

latent space. Feature learning is performed on the latent space 
to explore the intrinsic relation to discover the most 
discriminative features. Finally, a series of comparative 
experiments illustrate that our proposed model achieves the 
best performance compared to competing models using the 
data collected from the ADNI dataset. 
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