
  

 

Abstract— Epilepsy is a neurological disorder that causes 

sudden seizures due to abnormal excitation of neurons in the 

brain. Approximately 30 % of patients cannot control their 

seizures using medication. In addition, since seizures can occur 

anywhere and at any time, caregivers must always be with the 

patient. Various researchers have developed seizure detection 

methods using multichannel EEG to improve the quality of life 

of patients and caregivers. However, the large size of the 

measurement device impedes transportation. We believe that a 

portable measurement device with a small number of channels 

is suitable for detecting seizures in daily life. Therefore, we need 

a system that can detect seizures using a small number of 

channels.  The purpose of this research is to develop a seizure 

detection algorithm using a single-channel frontal EEG and to 

confirm its basic performance. We used EEG signals from a 

single electrode position (Fp1-F7, Fp2-F8), which is a bipolar 

derivation of the frontal region. We segmented the EEG using a 

2 s sliding window with 50 % overlap and converted the 

segments into images. After preprocessing, we fine-tuned 

ResNet18, pre-trained on ImageNet, and developed an ensemble 

classification method. In the experiments with 10 epileptic 

patients (3 – 19 years old) registered in the CHB-MIT scalp EEG 

database, the results showed that the average sensitivity was 

88.73 %, the average specificity was 98.98 %, and the average 

detection latency time was 7.39 s. In conclusion, the developed 

algorithm was validated as sufficiently accurate to detect 

epileptic seizures. 

 
Clinical Relevance— This establishes an image recognition 

algorithm that can detect epileptic seizures using a single-

channel frontal EEG. 

I. INTRODUCTION 

Epilepsy is a neurological disorder that causes sudden 
seizures due to the abnormal excitation of neurons in the brain. 
According to the World Health Organization, approximately 
50 million people are estimated to have epilepsy worldwide 
[1]. Seizure symptoms vary widely, including tonic-clonic, 
absence, myoclonic, and atonic seizures. Many patients can 
live a seizure-free life if properly diagnosed and treated; 
however, approximately 30 % of patients cannot control their 
seizures with medication; this is an obstacle to their social 
lives. In addition, after a seizure, caregivers need to ensure the 
patient's safety as the patients are at risk of bumping into 
objects or drowning in the bath, for example. However, since 
seizures can occur anywhere and at any time, caregivers must 
always be with the patient, which limits their daily activities. 
Therefore, seizure detection systems are needed to improve the 
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quality of life of patients and caregivers. Various researchers 
have developed seizure detection methods using multichannel 
EEG [2–3]. These methods can detect seizures with greater 
accuracy than single-channel EEGs as multichannel EEGs 
contain more signal information. However, the measurement 
device is quite large, and the electrodes must be placed on the 
entire head. In addition, since EEG measurement is usually 
performed in a hospital, the measurement location is limited. 
Therefore, it is difficult to measure EEG signals during daily 
life. We believe that a portable measurement device with a 
small number of channels is suitable for detecting seizures in 
daily life. Thus, we require a system that can detect seizures 
using a small number of channels. 

To solve this problem, we focused on frontal EEGs. The 
frontal association cortex is a region of the brain that receives 
information from other association cortexes and makes action 
plans based on the input [4–5]. It is also interconnected with 
the motor cortex, basal ganglia, and limbic system through 
fiber connections and receives information regarding 
movement, memory, arousal, and adjusting autonomic nerves 
[6]. Therefore, we consider that abnormal nerve excitation 
propagates to the frontal association area when uncontrolled 
jerking movements and loss of consciousness — i.e., seizure 
symptoms — occur. In addition, since the frontal association 
cortex is interconnected with other regions of the brain, we 
consider that abnormal nerve excitation sometimes propagates 
to the frontal association cortex when focal seizures occur in 
another region. Therefore, we believe that epileptic seizures 
can be detected using frontal EEG. It is easier to place 
electrodes on the forehead than on other measurement points 
because the skin is exposed. Therefore, frontal EEG seems to 
be the most appropriate method for seizure detection during 
daily life. 

In previous studies, statistical or frequency domain 
features extracted from multichannel EEGs have been used to 
detect seizures [3]. In addition, various supervised and 
unsupervised learning methods such as support vector 
machines, random forests, and k-nearest neighbor algorithms 
have been used as classifiers to detect seizures with high 
accuracy. However, since the information obtained from 
single-channel EEGs is less than that of multichannel EEGs, it 
is necessary to extract features more efficiently. In current 
EEG examinations, clinical investigators who have both 
experience and clinical knowledge diagnose seizure types 
based on EEG findings. Abnormal epileptic EEGs have a 
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complex wave patterns that comprise combination of spikes 
and slow waves [7], which are easy to distinguish from the 
background activity of normal EEG. Therefore, we believed 
that pattern recognition method is one of the most suitable for 
seizure detection. In recent years, advances in computing 
power have led to the development of deep learning methods 
for automatic pattern recognition. It has been confirmed that 
the performance of image recognition techniques is high 
enough to surpass that of humans [8–9]. Therefore, we believe 
that an image recognition technique that automatically learns 
abnormal wave patterns from EEG images is suitable for 
seizure detection using single-channel EEGs. 

The purpose of this research was to develop an image 
recognition algorithm for detecting epileptic seizures using a 
single-channel frontal EEG and to confirm its basic 
performance. 

II. MATERIALS AND METHODS 

A. EEG data 

In this study, we used the CHB-MIT Scalp EEG database 
from PhysioNet.org [10]. In this database, EEG data were 
measured from pediatric patients with intractable seizures 
based on the international 10 – 20 system [11]. They were 
recorded with a sampling frequency of 256 Hz and a resolution 
of 16 bits. The EEG data were stored in European Data Format 
(EDF) files, and the power line noise in EEG data was already 
removed. We used EEG signals from a single electrode 
position (Fp1-F7, Fp2-F8), which is a bipolar derivation of the 
frontal region. The position of the channel is shown in Fig. 1. 

 

There are two phases in epilepsy: the ictal period (during a 
seizure) and the interictal period (between seizures). The ictal 
period is the period between the onset of the first symptom and 
the end of the seizure. During the ictal period, abnormal 
epileptic EEGs appear in some or all of the brain. Since the 
database contains annotation files regarding the start and end 
times of seizures, as identified by clinical investigators, we 
used this information to identify the ictal period. The interictal 
period is defined as the period between the end of the seizure 
and the onset of the next seizure. It accounts for 99 % of the 

patients’ daily lives. Before the onset of a seizure, some 
patients experience physical, sensory, or emotional changes. 
Therefore, the period immediately before the seizure should be 
excluded from the interictal period. In addition, since the 
patient is dazed and gradually regains consciousness after the 
seizure [12], it takes time to return to normal brain activity. For 
these reasons, we defined the interictal period as a period of 
more than 30 min from the beginning and end of the seizure 
(Fig. 2). 

 

B. Epileptic abnormal waves 

We focused on the shape of the abnormal EEG that 
appeared during the ictal period. Neurons become overexcited 
due to repetitive paroxysmal depolarizing shifts in the epileptic 
focus, resulting in epileptic discharges, such as spikes and 
sharp waves [7]. In addition, slow waves occur during 
hyperpolarization. Since an epileptic abnormal EEG 
comprises this combination of spikes and slow waves, it can 
be clearly distinguished from the background activity of a 
normal EEG. The types of abnormal EEGs that appear during 
generalized seizures are shown in Table I [13–14]. The spike-
and-slow-wave complex (sp-w) occurs during a generalized 
tonic-clonic seizure and 3 Hz sp-w occurs during an absence 
seizure. Polyspike EEG patterns are commonly observed in 
juvenile myoclonic epilepsy. In addition, the delta and theta 
bursts are high-amplitude, rhythmic slow waves that occur 
when brain function is impaired, such as loss of consciousness. 
Characteristic abnormal EEG patterns occur during each type 
of seizure and thus we developed an image recognition 
algorithm to classify the shape of normal and epileptic 
abnormal EEGs. 

TABLE I.   
TYPES OF EPILEPTIC ABNORMAL EEGS 

Name sp-w 3Hz sp-w polyspike δ burst θ burst 

Waveform 
     

 

C. Signal processing 

We segmented the EEG using a 2-second sliding window 
with a 50 % overlap. An overview of the EEG segmentation is 
shown in Fig. 3. The amplitude of normal scalp EEG is about 
10  to 100 μV and abnormal EEG often has an amplitude more 
than twice as large as the background activity of a normal 
EEG. Therefore, we imaged the segmented EEG in the range 
of ±600 μV to have enough area to display the EEG. During 
imaging, the background color was set to black and the EEG 
was set to white. In addition, we resized the EEG image to 256 
× 256 and cropped the center to 244 × 244. We used a pre-
trained model from the Pytorch torchvision library and thus 
used the mean and standard deviation of the training data RGB 
levels from ImageNet to normalize the input images [15]. 

 

Figure 1.  The position of Fp1-F7 and Fp2-F8 

 

Figure 2.  Ictal and Interictal period 
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D. Development of the classifier 

The model architecture is illustrated in Fig. 4. Since the 
interictal period accounts for most of the patients’ daily lives, 
the amount of ictal EEG data that can be collected from 
patients is very small and the dataset has an imbalanced 
proportion of data. If an imbalanced dataset is used for training 
a classifier, the classification accuracy will be low. Therefore, 
it is necessary to balance the data proportion [16]. To prevent 
overfitting, and use all available EEG data, we undersampled 
the interictal EEG data to match the number of ictal EEG data, 
created n sub-datasets, trained each classifier using each sub-
dataset, and then determined the final output by taking a 
majority vote on the output of all classifiers. 

The amount of data in each sub-dataset was small so the 
batch size was set to 8. In addition, to detect abnormal epileptic 
EEGs using image recognition techniques, we used ResNet18 
as a classifier. ResNet (Residual Network) is a neural network 
model devised by Kaiming He et al. in 2015 [8], which 
achieves deeper layers and improved accuracy by introducing 
a shortcut connection. There are five versions of pre-trained 
models available in the Pytorch Torchvision library: 18, 34, 
50, 101, and 152 layers. As the layers get deeper, it takes more 
time to train the model; we decided to use ResNet with 18 
layers as a classifier. We loaded the pre-trained ImageNet 
weights from the torchvision model subpackage. ResNet is a 
model created for classifying an input image into 1,000 
categories so we need to replace the output layer for two-class 
classification. Therefore, we created a linear layer with two 
output nodes and replaced it with the output layer of ResNet18. 

During training, our model calculated the loss per epoch 
and performed backpropagation. During validation, our model 
calculated the accuracy per epoch using validation data and 
saved the weight parameter of the model when the accuracy 
improved. The number of epochs was set to 50. Seizure 
detection is a binary classification task so we used cross-
entropy loss as the loss function. In addition, we used ADAM 
as the optimizer to minimize the loss function and set the 
learning rate to 0.005. In this study, we fine-tuned ResNet 
trained on the ImageNet dataset for each patient to create a 
classifier tailored to the patient's seizure symptoms. 

E. Seizure detection algorithm 

The EEG contains superimposed noise due to head 
movement, facial muscle tension, and blinking [17] and thus 
evaluation within a single window is insufficient to classify 
normal and abnormal EEGs. Therefore, we developed a 
seizure detection algorithm to expand the decision range (Fig. 
5). In Fig. 5, we define the classes estimated by the ensemble 
model as class 0 (normal) and class 1 (anomaly). The proposed 
algorithm comprises two phases. The role of Phase I is to judge 

 

the timing of the change from the interictal period to the ictal 
period and the role of Phase II is to judge the timing of the 
change from the ictal period to the interictal period. 

I) When class 1 is counted five times in a row, our 
algorithm determines an anomalous EEG and 
moves to phase II. Otherwise, our algorithm 
determines a normal EEG signal. 

II) When class 0 is counted N times in a row, our 
algorithm determines a normal EEG and moves 
to phase I. Otherwise, our algorithm determines 
an anomalous EEG. N is the number of times 
class 1 is counted after moving to phase II. 

 

F. Experiment 

To confirm whether the developed algorithm is sufficiently 
accurate to detect abnormal EEG, we conducted experiments 
with 10 epileptic patients (3 – 19 years old) registered in the 
CHB-MIT scalp EEG database. The patient information is 
presented in Table II. We conducted two experiments, one 
using the Fp1-F7 channel and the other using the Fp2-F8 
channel. To evaluate the developed algorithm, we performed 
leave-one-out cross-validation (LOOCV). The procedure is as 
follows: First, we created N subgroups, where N is the number 
of seizures in each patient. Next, we divided the N seizure data 
into subgroups. We then divided the non-seizure data into 
subgroups so that the total time of non-seizure data in each 
group was equal. For example, in the case of chb01, the dataset 
contains seven edf files containing the ictal EEG 
(chb01_03.edf, chb01_04.edf, chb01_15.edf, chb01_16.edf, 
chb01_18.edf, chb01_21.edf, chb01_26.edf), we created seven 
subgroups and divided the seizure data into subgroups. In 
addition, since the dataset contains 21 hours of non-seizure 

 

Figure 3.  An overview of EEG segmentation 

 

Figure 4.  Model architecture 

 

Figure 5.  Seizure detection algorithm 
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data, we divided the 21 h of EEG data into 3 h of EEG data for 
each subgroup. We used one of the N subgroups as validation 
data and the others as training data. This cross-validation 
process was repeated N times, with each of the N subgroups 
used once as validation data. We evaluated sensitivity, 
specificity, and detection latency time (DLT). The sensitivity, 
specificity, and DLT were defined as follows: 

  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (1) 

  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 (2) 

 

𝐷𝐿𝑇 =  |𝑇𝑠 − 𝑇𝑑| (3) 

 

where TP is the number of true positives, FP is the number of 

false positives, TN is the number of true negatives, and FN is 

the number of false negatives. In addition, 𝑇𝑠 is the time of 

seizure onset and 𝑇𝑑  is the time when the seizure is first 

detected. 

TABLE II.   
PATIENT’S INFORMATION 

ID Gender Age 
Number of 

seizures 

Average time of 

ictal EEG [s] 

Total time of 

interictal EEG [h] 

chb01 F 11 7 63.14 21 

chb02 M 11 2 81.50 18 

chb03 F 14 7 57.43 21 

chb05 F 7 5 111.60 20 

chb07 F 14 3 108.33 48 

chb08 M 3 5 120.00 10 

chb09 F 10 4 69.00 32 

chb13 F 3 10 33.54 20 

chb19 F 19 3 78.67 18 

chb22 F 9 3 68.00 18 

 

G. EEG reading 

To determine the seizure type of epilepsy, it is necessary to 
estimate epileptic foci via electroencephalography. In this 
study, 18 channel EEGs were read for each patient to estimate 
their epileptic foci. EEG readings were performed based on the 
following criteria: the phase reversal between channels, large 
amplitude (>200 μV), appearance of spiny waves, sharp waves, 
and other abnormal epileptic EEGs [18]. As an example, the 
ictal period EEG of chb01 is shown in Fig. 6. The seizure 
started at 2996 s and a phase reversal of high-amplitude EEG 
(±200 μV) was identified between Fp2-F4 and F4-C4 
immediately after onset. Five seconds after the onset of the 
seizure, polyspikes appeared at Fp2-F8 and F8-T8. For these 
reasons, we suggest that the epileptic foci were in the vicinity 
of F4 and F8. The ictal period EEG of chb05 is shown in Fig. 
7. The seizure started at 2317 s and polyspikes appeared 
between F7-T7 and T7-P7 and between F8-T8 and T8-P8 
immediately after the onset. In addition, spikes and slow-wave 
complexes were identified over the entire head 4 s after the 
onset of the seizure. For these reasons, we suggest that the 
seizure foci were located in T7 and T8. Thus, we performed 
EEG readings for all 10 patients. 

 

 

III. RESULTS 

The results of the experiment using the Fp1-F7 channel are 
presented in Table III. The average sensitivity was 88.08 %, 
the average specificity was 98.98 %, and the average DLT was 
7.55 s. The results of the experiment using the Fp2-F8 channel 
are presented in Table IV. The average sensitivity was 86.63 
%, the average specificity was 97.76 %, and the average DLT 
was 8.16 seconds. The results of selecting the better channel in 
terms of sensitivity and specificity for each patient are 
presented in Table V. The average sensitivity, specificity, and 
DLT were 88.73 %, 98.98 %, and 7.39 s, respectively. The 
results of the EEG reading for 10 patients are presented in 
Table VI. F7, T7, and P7 indicate the anterior, middle, and 
posterior temporal regions of the left hemisphere, respectively, 
and F8, T8, and P8 indicate the anterior, middle, and posterior 
temporal regions of the right hemisphere. From the results of 
the EEG readings, it was estimated that all 10 patients had 
epileptic foci in the temporal region. 

 

 

 

 

 

 

 

 

Figure 6.  The ictal period EEG of chb01 

 

Figure 7.  The ictal period EEG of chb05 
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TABLE III.   
RESULTS OF EXPERIMENT USING FP1-F7 

ID 
Sensitivity [%] Specificity [%] DLT [s] 

Average S.D. Average S.D. Average S.D. 

chb01 89.67 5.63 98.55 2.71 6.29 1.50 

chb02 86.33 0.12 99.06 0.85 12.00 0.00 

chb03 90.29 4.39 98.86 2.14 5.43 1.13 

chb05 90.18 4.69 99.11 1.28 9.80 4.44 

chb07 90.37 8.28 99.38 0.43 6.33 0.58 

chb08 94.62 2.11 98.22 1.81 7.40 2.51 

chb09 87.63 7.53 99.61 0.73 9.00 4.24 

chb13 82.21 6.81 99.26 0.74 6.10 0.57 

chb19 86.24 3.84 98.85 1.07 9.67 0.58 

chb22 85.65 6.84 99.15 0.83 11.00 5.57 

ALL 88.08 6.36 98.98 1.51 7.55 3.01 

TABLE IV.   
RESULTS OF EXPERIMENT USING FP2-F8 

ID 
Sensitivity [%] Specificity [%] DLT [s] 

Average S.D. Average S.D. Average S.D. 

chb01 90.80 5.63 95.64 10.17 5.43 1.13 

chb02 87.58 1.65 98.20 0.44 11.00 1.41 

chb03 88.08 6.26 97.67 2.73 7.57 3.26 

chb05 90.09 5.60 94.78 9.43 9.00 4.74 

chb07 94.13 4.14 99.56 0.41 6.67 2.89 

chb08 92.27 1.82 97.22 2.80 10.20 2.17 

chb09 90.57 6.42 99.60 0.70 7.00 4.00 

chb13 73.78 15.77 99.30 0.95 8.70 1.95 

chb19 89.27 1.45 98.78 1.55 9.33 1.15 

chb22 85.18 7.00 97.99 1.09 9.33 4.04 

ALL 86.63 10.54 97.76 4.99 8.16 3.01 

TABLE V.   
RESULTS OF SELECTED CHANNELS 

ID 
Sensitivity [%] Specificity [%] DLT [s] 

side 
Average S.D. Average S.D. Average S.D. 

chb01 89.67 5.63 98.55 2.71 6.29 1.50 left 

chb02 86.33 0.12 99.06 0.85 12.00 0.00 left 

chb03 90.29 4.39 98.86 2.14 5.43 1.13 left 

chb05 90.18 4.69 99.11 1.28 9.80 4.44 left 

chb07 94.13 4.14 99.56 0.41 6.67 2.89 right 

chb08 94.62 2.11 98.23 1.81 7.40 2.51 left 

chb09 90.57 6.42 99.60 0.70 7.00 4.00 right 

chb13 82.21 6.81 99.26 0.74 6.10 0.57 left 

chb19 89.27 1.45 98.78 1.55 9.33 1.15 right 

chb22 85.65 6.84 99.15 0.83 11.00 5.57 left 

ALL 88.73 6.22 98.98 1.53 7.39 3.01  

 

TABLE VI.   
ESTIMATED SEIZURE FOCI 

ID Estimated seizure foci 

chb01 F4, F8 

chb02 P3, P7 

chb03 P7 

chb05 T7, T8 

chb07 T7, T8 

chb08 T7 

chb09 T7, T8 

chb13 F7 

chb19 F7, F8 

chb22 T7, T8 

 

IV. DISSCUSION 

To detect seizures, several methods using multichannel 
EEG have been developed. Zabihi et al. developed a method 
to extract statistical and frequency domain features from EEG 
and created a classifier for each patient using SVM [3]. They 
conducted experiments with four epileptic patients registered 
in the CHB-MIT scalp EEG database. The average sensitivity 
and specificity were 90.62 % and 99.32 %, respectively. These 
methods using multi-channel EEG can be applied to the 
automatic interpretation of EEG and the diagnosis of epilepsy. 
However, it is difficult to measure multichannel EEG during 
daily life because the measurement device is quite large and 
electrodes must be placed on the entire head. For these reasons, 
we proposed an algorithm to detect seizures using a single-
channel frontal EEG. As a result of the experiment, the average 
sensitivity of developed algorithm was 88.73 %, which 
confirmed that the developed algorithm was as sensitive as the 
conventional method using multichannel EEG. Since 
abnormal epileptic EEGs can be clearly distinguished from the 
background activity of a normal EEG, we believe that we were 
able to achieve highly sensitive seizure detection based on the 
waveform pattern. In addition, we confirmed that the DLT of 
developed algorithm was 7.39 s. Since epileptic seizures 
usually last from 30 to 60 s, if we can notify a caregiver within 
8 s after onset, the caregiver can quickly take care of the patient 
after the seizure. Therefore, we consider that the time delay of 
our algorithm is not a problem for seizure detection. We 
believe that our proposed method using single-channel frontal 
EEG will contribute to the detection of epileptic seizures 
during daily life. Meanwhile, the experimental results show 
that the average specificity of developed algorithm was 98.98 
%, which was lower than that of conventional methods. One 
reason for this is that there is little brain activity information 
available from a single-channel EEG and another reason is that 
the EEG contains superimposed noise due to head movement, 
facial muscle tension, and blinking [16]. To improve the 
specificity, we believe that it is necessary to increase the width 
of the sliding window used in the seizure detection algorithm. 

In this study, we examined EEG signals to estimate the 
location of epileptic foci in patients. As a result of the EEG 
reading, all 10 patients were estimated to have epileptic foci in 
the temporal region. Therefore, we believe that the algorithm 
developed using a single-channel frontal EEG can detect 
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temporal lobe seizures. There are two types of temporal lobe 
epilepsy: mesial temporal lobe epilepsy, in which seizures are 
triggered by hippocampal stiffness in the limbic system [19], 
and lateral temporal lobe epilepsy, in which seizures are 
caused by epileptic discharges in the neocortex. Since the 
frontal association cortex is interconnected with the temporal 
association cortex and limbic system by fiber connections, we 
believe that abnormal excitations propagate to the frontal 
association cortex when epileptic discharges occur in the 
temporal region. In the case of detecting temporal lobe 
seizures, some studies have shown that using a single-channel 
temporal EEG (FT10-T8) is effective [20]; however, when 
measuring the temporal channel, it is not easy to place 
electrodes on the measurement points because of the patient's 
hair. Therefore, compared to the methods using other single-
channel EEG, our algorithm using single-channel frontal EEG 
is effective for detecting temporal lobe seizures during daily 
life in terms of ease of placement. 

The basic performance of the developed algorithm was 
experimentally confirmed. In the future, we will collect frontal 
EEG data of patients with epilepsy during their daily lives and 
verify the accuracy of the proposed algorithm. 

V. CONCLUSION 

We proposed and developed an algorithm to detect 

abnormal epileptic EEG patterns using single-channel frontal 

EEG and image recognition techniques. The experimental 

results showed that our algorithm was as sensitive as the 

conventional method using multi-channel EEG. In addition, 

we estimated the location of the epileptic foci via EEG 

reading and demonstrated the possibility of detecting 

temporal lobe epilepsy. In the future, we will collect frontal 

EEG data of epileptic patients during their daily lives and 

verify the accuracy of the proposed algorithm.  

APPENDIX 

Details of the experimental subgroups are presented in 

Table VII. Each subgroup contained different seizure data. 

Because some edf files contain two or more seizures, some of 

the names in the Seizure data columns are the same. 

TABLE VII.   
ESTIMATED SEIZURE FOCI 

ID 
Subgroup 

number 
Seizure data Non seizure data 

chb01 

1 chb01_03.edf 
chb01_06.edf, chb01_07.edf, 

chb01_08.edf 

2 chb01_04.edf 
chb01_09.edf, chb01_10.edf, 

chb01_11.edf 

3 chb01_15.edf 
chb01_12.edf, chb01_13.edf, 

chb01_23.edf 

4 chb01_16.edf 
chb01_24.edf, chb01_30.edf, 

chb01_31.edf 

5 chb01_18.edf 
chb01_32.edf, chb01_33.edf, 

chb01_34.edf 

6 chb01_21.edf 
chb01_36.edf, chb01_37.edf, 

chb01_38.edf 

7 chb01_26.edf 
chb01_39.edf, chb01_40.edf, 

chb01_41.edf 

chb02 1 chb02_16.edf 

chb02_02.edf, chb02_07.edf, 

chb02_08.edf, chb02_09.edf, 

chb02_10.edf, chb02_11.edf, 

chb02_12.edf, chb02_13.edf, 

chb02_14.edf 

2 chb02_16+.edf 

chb02_22.edf, chb02_25.edf, 

chb02_28.edf, chb02_29.edf, 

chb02_30.edf, chb02_31.edf, 

chb02_32.edf, chb02_33.edf, 

chb02_34.edf 

chb03 

1 chb03_01.edf 
chb03_06.edf, chb03_07.edf, 

chb03_08.edf 

2 chb03_02.edf 
chb03_09.edf, chb03_10.edf, 

chb03_11.edf 

3 chb03_03.edf 
chb03_12.edf, chb03_13.edf, 

chb03_14.edf 

4 chb03_04.edf 
chb03_15.edf, chb03_16.edf, 

chb03_17.edf 

5 chb03_34.edf 
chb03_18.edf, chb03_19.edf, 

chb03_20.edf 

6 chb03_35.edf 
chb03_22.edf, chb03_23.edf, 

chb03_24.edf 

7 chb03_36.edf 
chb03_29.edf, chb03_30.edf, 

chb03_31.edf 

chb05 

1 chb05_06.edf 
chb05_08.edf, chb05_09.edf, 

chb05_10.edf, chb05_11.edf 

2 chb05_13.edf 
chb05_20.edf, chb05_24.edf, 

chb05_25.edf, chb05_26.edf 

3 chb05_16.edf 
chb05_27.edf, chb05_28.edf, 

chb05_29.edf, chb05_30.edf 

4 chb05_17.edf 
chb05_31.edf, chb05_32.edf, 

chb05_33.edf, chb05_34.edf 

5 chb05_22.edf 
chb05_35.edf, chb05_36.edf, 

chb05_37.edf, chb05_38.edf 

chb07 

1 chb07_12.edf 
chb07_01.edf, chb07_02.edf, 

chb07_03.edf, chb07_04.edf 

2 chb07_13.edf 
chb07_06.edf, chb07_07.edf, 

chb07_08.edf, chb07_09.edf 

3 chb07_19.edf 
chb07_10.edf, chb07_15.edf, 

chb07_16.edf, chb07_17.edf 

chb08 

1 chb08_02.edf chb08_04.edf, chb08_10.edf 

2 chb08_05.edf chb08_15.edf, chb08_16.edf 

3 chb08_11.edf chb08_17.edf, chb08_18.edf 

4 chb08_13.edf chb08_19.edf, chb08_20.edf 

5 chb08_21.edf chb08_23.edf, chb08_24.edf 

chb09 

1 chb09_06.edf chb09_03.edf, chb09_04.edf 

2 chb09_08.edf chb09_09.edf, chb09_10.edf 

3 chb09_08.edf chb09_13.edf, chb09_14.edf 

4 chb09_19.edf chb09_16.edf, chb09_17.edf 

chb13 

1 chb13_19.edf chb13_03.edf, chb13_04.edf 

2 chb13_21.edf chb13_05.edf, chb13_06.edf 

3 chb13_40.edf chb13_07.edf, chb13_08.edf 

4 chb13_40.edf chb13_09.edf, chb13_10.edf 

5 chb13_55.edf chb13_11.edf, chb13_12.edf 

6 chb13_55.edf chb13_13.edf, chb13_14.edf 

7 chb13_59.edf chb13_15.edf, chb13_16.edf 

8 chb13_60.edf chb13_24.edf, chb13_30.edf 

9 chb13_62.edf chb13_36.edf, chb13_37.edf 

10 chb13_62.edf chb13_38.edf, chb13_47.edf 

chb19 

1 chb19_28.edf 

chb19_06.edf, chb19_07.edf, 

chb19_08.edf, chb19_09.edf, 

chb19_10.edf, chb19_11.edf 

2 chb19_29.edf 

chb19_12.edf, chb19_13.edf, 

chb19_14.edf, chb19_15.edf, 

chb19_16.edf, chb19_17.edf 

3 chb19_30.edf 

chb19_21.edf, chb19_22.edf, 

chb19_23.edf, chb19_24.edf, 

chb19_25.edf, chb19_26.edf 

chb22 

1 chb22_20.edf 

chb22_02.edf, chb22_03.edf, 

chb22_04.edf, chb22_05.edf, 

chb22_06.edf, chb22_07.edf 

2 chb22_25.edf 

chb22_08.edf, chb22_09.edf, 

chb22_10.edf, chb22_16.edf, 

chb22_17.edf, chb22_18.edf 

3 chb22_38.edf 

chb22_22.edf, chb22_23.edf, 

chb22_27.edf, chb22_28.edf, 

chb22_29.edf, chb22_30.edf 
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