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frontal EEG and a pre-trained ResNet*

Takumu Yoshiba, Hiroaki Kawamoto, and Yoshiyuki Sankai, Member, IEEE

Abstract— Epilepsy is a neurological disorder that causes
sudden seizures due to abnormal excitation of neurons in the
brain. Approximately 30 % of patients cannot control their
seizures using medication. In addition, since seizures can occur
anywhere and at any time, caregivers must always be with the
patient. Various researchers have developed seizure detection
methods using multichannel EEG to improve the quality of life
of patients and caregivers. However, the large size of the
measurement device impedes transportation. We believe that a
portable measurement device with a small number of channels
is suitable for detecting seizures in daily life. Therefore, we need
a system that can detect seizures using a small number of
channels. The purpose of this research is to develop a seizure
detection algorithm using a single-channel frontal EEG and to
confirm its basic performance. We used EEG signals from a
single electrode position (Fp1-F7, Fp2-F8), which is a bipolar
derivation of the frontal region. We segmented the EEG using a
2 s sliding window with 50 % overlap and converted the
segments into images. After preprocessing, we fine-tuned
ResNet18, pre-trained on ImageNet, and developed an ensemble
classification method. In the experiments with 10 epileptic
patients (3 — 19 years old) registered in the CHB-MIT scalp EEG
database, the results showed that the average sensitivity was
88.73 %, the average specificity was 98.98 %, and the average
detection latency time was 7.39 s. In conclusion, the developed
algorithm was validated as sufficiently accurate to detect
epileptic seizures.

Clinical Relevance— This establishes an image recognition
algorithm that can detect epileptic seizures using a single-
channel frontal EEG.

I. INTRODUCTION

Epilepsy is a neurological disorder that causes sudden
seizures due to the abnormal excitation of neurons in the brain.
According to the World Health Organization, approximately
50 million people are estimated to have epilepsy worldwide
[1]. Seizure symptoms vary widely, including tonic-clonic,
absence, myoclonic, and atonic seizures. Many patients can
live a seizure-free life if properly diagnosed and treated;
however, approximately 30 % of patients cannot control their
seizures with medication; this is an obstacle to their social
lives. In addition, after a seizure, caregivers need to ensure the
patient's safety as the patients are at risk of bumping into
objects or drowning in the bath, for example. However, since
seizures can occur anywhere and at any time, caregivers must
always be with the patient, which limits their daily activities.
Therefore, seizure detection systems are needed to improve the

* A part of this research was funded by InPACT Program, promoted by
Council for Science, Technology and Innovation, Cabinet Office, Japan.

T. Yoshiba is Second years in the Master of Graduate School of Systems
and Information Engineering, University of Tsukuba, 1-1-1 Tennodai,
Tsukuba, 305-8577, Japan. (e-mail: yoshiba@golem.iit.tsukuba.ac.jp).

978-1-7281-1178-0/21/$31.00 ©2021 IEEE

quality of life of patients and caregivers. Various researchers
have developed seizure detection methods using multichannel
EEG [2-3]. These methods can detect seizures with greater
accuracy than single-channel EEGs as multichannel EEGs
contain more signal information. However, the measurement
device is quite large, and the electrodes must be placed on the
entire head. In addition, since EEG measurement is usually
performed in a hospital, the measurement location is limited.
Therefore, it is difficult to measure EEG signals during daily
life. We believe that a portable measurement device with a
small number of channels is suitable for detecting seizures in
daily life. Thus, we require a system that can detect seizures
using a small number of channels.

To solve this problem, we focused on frontal EEGs. The
frontal association cortex is a region of the brain that receives
information from other association cortexes and makes action
plans based on the input [4-5]. It is also interconnected with
the motor cortex, basal ganglia, and limbic system through
fiber connections and receives information regarding
movement, memory, arousal, and adjusting autonomic nerves
[6]. Therefore, we consider that abnormal nerve excitation
propagates to the frontal association area when uncontrolled
jerking movements and loss of consciousness — i.e., seizure
symptoms — occur. In addition, since the frontal association
cortex is interconnected with other regions of the brain, we
consider that abnormal nerve excitation sometimes propagates
to the frontal association cortex when focal seizures occur in
another region. Therefore, we believe that epileptic seizures
can be detected using frontal EEG. It is easier to place
electrodes on the forehead than on other measurement points
because the skin is exposed. Therefore, frontal EEG seems to
be the most appropriate method for seizure detection during
daily life.

In previous studies, statistical or frequency domain
features extracted from multichannel EEGs have been used to
detect seizures [3]. In addition, various supervised and
unsupervised learning methods such as support vector
machines, random forests, and k-nearest neighbor algorithms
have been used as classifiers to detect seizures with high
accuracy. However, since the information obtained from
single-channel EEGs is less than that of multichannel EEGs, it
is necessary to extract features more efficiently. In current
EEG examinations, clinical investigators who have both
experience and clinical knowledge diagnose seizure types
based on EEG findings. Abnormal epileptic EEGs have a
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complex wave patterns that comprise combination of spikes
and slow waves [7], which are easy to distinguish from the
background activity of normal EEG. Therefore, we believed
that pattern recognition method is one of the most suitable for
seizure detection. In recent years, advances in computing
power have led to the development of deep learning methods
for automatic pattern recognition. It has been confirmed that
the performance of image recognition techniques is high
enough to surpass that of humans [8-9]. Therefore, we believe
that an image recognition technique that automatically learns
abnormal wave patterns from EEG images is suitable for
seizure detection using single-channel EEGs.

The purpose of this research was to develop an image
recognition algorithm for detecting epileptic seizures using a
single-channel frontal EEG and to confirm its basic
performance.

II. MATERIALS AND METHODS

A. EEG data

In this study, we used the CHB-MIT Scalp EEG database
from PhysioNet.org [10]. In this database, EEG data were
measured from pediatric patients with intractable seizures
based on the international 10 — 20 system [11]. They were
recorded with a sampling frequency of 256 Hz and a resolution
of 16 bits. The EEG data were stored in European Data Format
(EDF) files, and the power line noise in EEG data was already
removed. We used EEG signals from a single electrode
position (Fp1-F7, Fp2-F8), which is a bipolar derivation of the
frontal region. The position of the channel is shown in Fig. 1.
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Figure 1. The position of Fp1-F7 and Fp2-F8

There are two phases in epilepsy: the ictal period (during a
seizure) and the interictal period (between seizures). The ictal
period is the period between the onset of the first symptom and
the end of the seizure. During the ictal period, abnormal
epileptic EEGs appear in some or all of the brain. Since the
database contains annotation files regarding the start and end
times of seizures, as identified by clinical investigators, we
used this information to identify the ictal period. The interictal
period is defined as the period between the end of the seizure
and the onset of the next seizure. It accounts for 99 % of the

patients’ daily lives. Before the onset of a seizure, some
patients experience physical, sensory, or emotional changes.
Therefore, the period immediately before the seizure should be
excluded from the interictal period. In addition, since the
patient is dazed and gradually regains consciousness after the
seizure [12], it takes time to return to normal brain activity. For
these reasons, we defined the interictal period as a period of
more than 30 min from the beginning and end of the seizure

(Fig. 2).

Interictal period Ictal period Interictal period

30 min 30 min

Figure 2. Ictal and Interictal period

B. Epileptic abnormal waves

We focused on the shape of the abnormal EEG that
appeared during the ictal period. Neurons become overexcited
due to repetitive paroxysmal depolarizing shifts in the epileptic
focus, resulting in epileptic discharges, such as spikes and
sharp waves [7]. In addition, slow waves occur during
hyperpolarization. Since an epileptic abnormal EEG
comprises this combination of spikes and slow waves, it can
be clearly distinguished from the background activity of a
normal EEG. The types of abnormal EEGs that appear during
generalized seizures are shown in Table I [13—14]. The spike-
and-slow-wave complex (sp-w) occurs during a generalized
tonic-clonic seizure and 3 Hz sp-w occurs during an absence
seizure. Polyspike EEG patterns are commonly observed in
juvenile myoclonic epilepsy. In addition, the delta and theta
bursts are high-amplitude, rhythmic slow waves that occur
when brain function is impaired, such as loss of consciousness.
Characteristic abnormal EEG patterns occur during each type
of seizure and thus we developed an image recognition
algorithm to classify the shape of normal and epileptic
abnormal EEGs.

TABLE L.
TYPES OF EPILEPTIC ABNORMAL EEGS
Name Sp-w 3Hz sp-w polyspike J burst 6 burst
waveorn | AWV | | ol | VY

C. Signal processing

We segmented the EEG using a 2-second sliding window
with a 50 % overlap. An overview of the EEG segmentation is
shown in Fig. 3. The amplitude of normal scalp EEG is about
10 to 100 uV and abnormal EEG often has an amplitude more
than twice as large as the background activity of a normal
EEG. Therefore, we imaged the segmented EEG in the range
of £600 pV to have enough area to display the EEG. During
imaging, the background color was set to black and the EEG
was set to white. In addition, we resized the EEG image to 256
x 256 and cropped the center to 244 x 244. We used a pre-
trained model from the Pytorch torchvision library and thus
used the mean and standard deviation of the training data RGB
levels from ImageNet to normalize the input images [15].
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Figure 3. An overview of EEG segmentation

D. Development of the classifier

The model architecture is illustrated in Fig. 4. Since the
interictal period accounts for most of the patients’ daily lives,
the amount of ictal EEG data that can be collected from
patients is very small and the dataset has an imbalanced
proportion of data. If an imbalanced dataset is used for training
a classifier, the classification accuracy will be low. Therefore,
it is necessary to balance the data proportion [16]. To prevent
overfitting, and use all available EEG data, we undersampled
the interictal EEG data to match the number of ictal EEG data,
created n sub-datasets, trained each classifier using each sub-
dataset, and then determined the final output by taking a
majority vote on the output of all classifiers.

The amount of data in each sub-dataset was small so the
batch size was set to 8. In addition, to detect abnormal epileptic
EEGs using image recognition techniques, we used ResNet18
as a classifier. ResNet (Residual Network) is a neural network
model devised by Kaiming He et al. in 2015 [8], which
achieves deeper layers and improved accuracy by introducing
a shortcut connection. There are five versions of pre-trained
models available in the Pytorch Torchvision library: 18, 34,
50, 101, and 152 layers. As the layers get deeper, it takes more
time to train the model; we decided to use ResNet with 18
layers as a classifier. We loaded the pre-trained ImageNet
weights from the torchvision model subpackage. ResNet is a
model created for classifying an input image into 1,000
categories so we need to replace the output layer for two-class
classification. Therefore, we created a linear layer with two
output nodes and replaced it with the output layer of ResNet18.

During training, our model calculated the loss per epoch
and performed backpropagation. During validation, our model
calculated the accuracy per epoch using validation data and
saved the weight parameter of the model when the accuracy
improved. The number of epochs was set to 50. Seizure
detection is a binary classification task so we used cross-
entropy loss as the loss function. In addition, we used ADAM
as the optimizer to minimize the loss function and set the
learning rate to 0.005. In this study, we fine-tuned ResNet
trained on the ImageNet dataset for each patient to create a
classifier tailored to the patient's seizure symptoms.

E. Seizure detection algorithm

The EEG contains superimposed noise due to head
movement, facial muscle tension, and blinking [17] and thus
evaluation within a single window is insufficient to classify
normal and abnormal EEGs. Therefore, we developed a
seizure detection algorithm to expand the decision range (Fig.
5). In Fig. 5, we define the classes estimated by the ensemble
model as class 0 (normal) and class 1 (anomaly). The proposed
algorithm comprises two phases. The role of Phase I is to judge
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Figure 4. Model architecture

the timing of the change from the interictal period to the ictal
period and the role of Phase II is to judge the timing of the
change from the ictal period to the interictal period.

) When class 1 is counted five times in a row, our
algorithm determines an anomalous EEG and
moves to phase II. Otherwise, our algorithm
determines a normal EEG signal.

1) When class 0 is counted N times in a row, our
algorithm determines a normal EEG and moves
to phase 1. Otherwise, our algorithm determines
an anomalous EEG. N is the number of times
class 1 is counted after moving to phase II.

Sliding window
2 s (overlap 50%)

EEG D Y i ol -‘-'vAa'."V‘w-.,‘;.u !

Classification by ensemble model | 55

Phase I

«.i overlap 1s

Predicted class 0:1 1 1 1/1:1 1 0 0 0 0
S —

Afterprocessing 0 1 1 1

0 : normal EEG

A
Judge as the ictal period / Move to phase T1
1: anomaly EEG

Ns

Phase I1

c
Predicted class 0 1 L 1 1 1[11 0 0 0 0  =eccfeeinan
t
After processing I 1T 1 1 1 0 saeeeenns
A
Judge as the interictal period / Move to phase [

Figure 5. Seizure detection algorithm

F. Experiment

To confirm whether the developed algorithm is sufficiently
accurate to detect abnormal EEG, we conducted experiments
with 10 epileptic patients (3 — 19 years old) registered in the
CHB-MIT scalp EEG database. The patient information is
presented in Table II. We conducted two experiments, one
using the Fpl-F7 channel and the other using the Fp2-F8
channel. To evaluate the developed algorithm, we performed
leave-one-out cross-validation (LOOCV). The procedure is as
follows: First, we created N subgroups, where N is the number
of seizures in each patient. Next, we divided the N seizure data
into subgroups. We then divided the non-seizure data into
subgroups so that the total time of non-seizure data in each
group was equal. For example, in the case of chb01, the dataset
contains seven edf files containing the ictal EEG
(chb01 03.edf, chb01 04.edf, chbOl 15.edf, chb0l 16.edf,
chb01 18.edf, chb01 21.edf, chb01 26.edf), we created seven
subgroups and divided the seizure data into subgroups. In
addition, since the dataset contains 21 hours of non-seizure
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data, we divided the 21 h of EEG data into 3 h of EEG data for
each subgroup. We used one of the N subgroups as validation
data and the others as training data. This cross-validation
process was repeated N times, with each of the N subgroups
used once as validation data. We evaluated sensitivity,
specificity, and detection latency time (DLT). The sensitivity,
specificity, and DLT were defined as follows:

TP
PP %
Sensitivity TPTFN 100 )
Specificity = i x 100 2)
pecificity = TN+ FP
DLT = |Ts — T4l 3)

where TP is the number of true positives, FP is the number of
false positives, TN is the number of true negatives, and FN is
the number of false negatives. In addition, Ty is the time of
seizure onset and T, is the time when the seizure is first
detected.

TABLE II
PATIENT’S INFORMATION
ID | Gender | Age | " | ot | imencal Egen)
chb01 F 11 7 63.14 21
chb02 M 11 2 81.50 18
chb03 F 14 7 57.43 21
chb05 F 7 5 111.60 20
chb07 F 14 3 108.33 48
chb08 M 3 5 120.00 10
chb09 F 10 4 69.00 32
chbl3 F 3 10 33.54 20
chb19 F 19 3 78.67 18
chb22 F 9 3 68.00 18

G. EEG reading

To determine the seizure type of epilepsy, it is necessary to
estimate epileptic foci via electroencephalography. In this
study, 18 channel EEGs were read for each patient to estimate
their epileptic foci. EEG readings were performed based on the
following criteria: the phase reversal between channels, large

amplitude (>200 pV), appearance of spiny waves, sharp waves,

and other abnormal epileptic EEGs [18]. As an example, the
ictal period EEG of chb0l is shown in Fig. 6. The seizure
started at 2996 s and a phase reversal of high-amplitude EEG
(#200 pV) was identified between Fp2-F4 and F4-C4
immediately after onset. Five seconds after the onset of the
seizure, polyspikes appeared at Fp2-F8 and F8-T8. For these
reasons, we suggest that the epileptic foci were in the vicinity
of F4 and F8. The ictal period EEG of chb05 is shown in Fig.
7. The seizure started at 2317 s and polyspikes appeared
between F7-T7 and T7-P7 and between F8-T8 and TS8-P8
immediately after the onset. In addition, spikes and slow-wave
complexes were identified over the entire head 4 s after the
onset of the seizure. For these reasons, we suggest that the
seizure foci were located in T7 and T8. Thus, we performed
EEG readings for all 10 patients.
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Figure 6. The ictal period EEG of chb01
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Figure 7. The ictal period EEG of chb05

III. RESULTS

The results of the experiment using the Fp1-F7 channel are
presented in Table III. The average sensitivity was 88.08 %,
the average specificity was 98.98 %, and the average DLT was
7.55 s. The results of the experiment using the Fp2-F8 channel
are presented in Table IV. The average sensitivity was 86.63
%, the average specificity was 97.76 %, and the average DLT
was 8.16 seconds. The results of selecting the better channel in
terms of sensitivity and specificity for each patient are
presented in Table V. The average sensitivity, specificity, and
DLT were 88.73 %, 98.98 %, and 7.39 s, respectively. The
results of the EEG reading for 10 patients are presented in
Table VI. F7, T7, and P7 indicate the anterior, middle, and
posterior temporal regions of the left hemisphere, respectively,
and F8, T8, and P8 indicate the anterior, middle, and posterior
temporal regions of the right hemisphere. From the results of
the EEG readings, it was estimated that all 10 patients had
epileptic foci in the temporal region.
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TABLE IIL
RESULTS OF EXPERIMENT USING FP1-F7

Sensitivity [%] Specificity [%] DLT [s]
® Average S.D. Average S.D. Average S.D.

chb01 89.67 5.63 98.55 2.71 6.29 1.50
chb02 86.33 0.12 99.06 0.85 12.00 0.00
chb03 90.29 439 98.86 2.14 543 1.13
chb05 90.18 4.69 99.11 1.28 9.80 4.44
chb07 90.37 8.28 99.38 0.43 6.33 0.58
chb08 94.62 2.11 98.22 1.81 7.40 2.51
chb09 87.63 7.53 99.61 0.73 9.00 4.24
chbl3 8221 6.81 99.26 0.74 6.10 0.57
chbl19 86.24 3.84 98.85 1.07 9.67 0.58
chb22 85.65 6.84 99.15 0.83 11.00 5.57

ALL 88.08 6.36 98.98 1.51 7.55 3.01

TABLE IV.
RESULTS OF EXPERIMENT USING FP2-F8
Sensitivity [%] Specificity [%] DLT [s]
® Average S.D. Average S.D. Average S.D.

chb01 90.80 5.63 95.64 10.17 5.43 1.13
chb02 87.58 1.65 98.20 0.44 11.00 1.41
chb03 88.08 6.26 97.67 2.73 7.57 3.26
chb05 90.09 5.60 94.78 9.43 9.00 4.74
chb07 94.13 4.14 99.56 0.41 6.67 2.89
chb08 92.27 1.82 97.22 2.80 10.20 2.17
chb09 90.57 6.42 99.60 0.70 7.00 4.00
chbl3 73.78 15.77 99.30 0.95 8.70 1.95
chbl19 89.27 1.45 98.78 1.55 9.33 1.15
chb22 85.18 7.00 97.99 1.09 9.33 4.04

ALL 86.63 10.54 97.76 4.99 8.16 3.01

TABLE V.
RESULTS OF SELECTED CHANNELS
Sensitivity [%] Specificity [%] DLT [s]
ID side
Average | S.D. | Average | S.D. | Average | S.D.

chb01 89.67 5.63 98.55 2.71 6.29 1.50 left
chb02 86.33 0.12 99.06 0.85 12.00 0.00 left
chb03 90.29 4.39 98.86 2.14 5.43 1.13 left
chb05 90.18 4.69 99.11 1.28 9.80 4.44 left
chb07 94.13 4.14 99.56 0.41 6.67 2.89 | right
chb08 94.62 2.11 98.23 1.81 7.40 2.51 left
chb09 90.57 6.42 99.60 0.70 7.00 4.00 | right
chbl3 82.21 6.81 99.26 0.74 6.10 0.57 left
chb19 89.27 1.45 98.78 1.55 9.33 1.15 | right
chb22 85.65 6.84 99.15 0.83 11.00 5.57 left
ALL 88.73 6.22 98.98 1.53 7.39 3.01

TABLE VL
ESTIMATED SEIZURE FOCI
ID Estimated seizure foci
chbo1 F4, F8
chb02 P3,P7
chb03 P7
chb05 T7, T8
chb07 T7, T8
chb08 T7
chb09 T7, T8
chbl3 F7
chb19 F7,F8
chb22 T7, T8

IV. DISscuUsION

To detect seizures, several methods using multichannel
EEG have been developed. Zabihi et al. developed a method
to extract statistical and frequency domain features from EEG
and created a classifier for each patient using SVM [3]. They
conducted experiments with four epileptic patients registered
in the CHB-MIT scalp EEG database. The average sensitivity
and specificity were 90.62 % and 99.32 %, respectively. These
methods using multi-channel EEG can be applied to the
automatic interpretation of EEG and the diagnosis of epilepsy.
However, it is difficult to measure multichannel EEG during
daily life because the measurement device is quite large and
electrodes must be placed on the entire head. For these reasons,
we proposed an algorithm to detect seizures using a single-
channel frontal EEG. As a result of the experiment, the average
sensitivity of developed algorithm was 88.73 %, which
confirmed that the developed algorithm was as sensitive as the
conventional method using multichannel EEG. Since
abnormal epileptic EEGs can be clearly distinguished from the
background activity of a normal EEG, we believe that we were
able to achieve highly sensitive seizure detection based on the
waveform pattern. In addition, we confirmed that the DLT of
developed algorithm was 7.39 s. Since epileptic seizures
usually last from 30 to 60 s, if we can notify a caregiver within
8 s after onset, the caregiver can quickly take care of the patient
after the seizure. Therefore, we consider that the time delay of
our algorithm is not a problem for seizure detection. We
believe that our proposed method using single-channel frontal
EEG will contribute to the detection of epileptic seizures
during daily life. Meanwhile, the experimental results show
that the average specificity of developed algorithm was 98.98
%, which was lower than that of conventional methods. One
reason for this is that there is little brain activity information
available from a single-channel EEG and another reason is that
the EEG contains superimposed noise due to head movement,
facial muscle tension, and blinking [16]. To improve the
specificity, we believe that it is necessary to increase the width
of the sliding window used in the seizure detection algorithm.

In this study, we examined EEG signals to estimate the
location of epileptic foci in patients. As a result of the EEG
reading, all 10 patients were estimated to have epileptic foci in
the temporal region. Therefore, we believe that the algorithm
developed using a single-channel frontal EEG can detect
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temporal lobe seizures. There are two types of temporal lobe
epilepsy: mesial temporal lobe epilepsy, in which seizures are
triggered by hippocampal stiffness in the limbic system [19],
and lateral temporal lobe epilepsy, in which seizures are
caused by epileptic discharges in the neocortex. Since the
frontal association cortex is interconnected with the temporal
association cortex and limbic system by fiber connections, we
believe that abnormal excitations propagate to the frontal
association cortex when epileptic discharges occur in the
temporal region. In the case of detecting temporal lobe
seizures, some studies have shown that using a single-channel
temporal EEG (FT10-T8) is effective [20]; however, when
measuring the temporal channel, it is not easy to place
electrodes on the measurement points because of the patient's
hair. Therefore, compared to the methods using other single-
channel EEG, our algorithm using single-channel frontal EEG
is effective for detecting temporal lobe seizures during daily
life in terms of ease of placement.

The basic performance of the developed algorithm was
experimentally confirmed. In the future, we will collect frontal
EEG data of patients with epilepsy during their daily lives and
verify the accuracy of the proposed algorithm.

V. CONCLUSION

We proposed and developed an algorithm to detect
abnormal epileptic EEG patterns using single-channel frontal
EEG and image recognition techniques. The experimental
results showed that our algorithm was as sensitive as the
conventional method using multi-channel EEG. In addition,
we estimated the location of the epileptic foci via EEG
reading and demonstrated the possibility of detecting
temporal lobe epilepsy. In the future, we will collect frontal
EEG data of epileptic patients during their daily lives and
verify the accuracy of the proposed algorithm.

APPENDIX

Details of the experimental subgroups are presented in
Table VII. Each subgroup contained different seizure data.
Because some edf files contain two or more seizures, some of
the names in the Seizure data columns are the same.

TABLE VIL
ESTIMATED SEIZURE FOCI
D Subgroup Seizure data Non seizure data
number

chb01_06.edf, chb01_07.edf,

1 chb01_03.edf chb01 08.cdf
chb01_09.edf, chb01 10.edf,

2 chb01_04.edf chbO1 11.edf
chb01_12.edf, chb01_13.edf,

3 chb01_15.edf chb01 23.edf
chb01_24.edf, chb01 30.edf,

chb01 4 chb01_16.edf chb01 31.edf
chb01_32.edf, chb01_33.edf,

5 chb01_18.edf chb01 34.cdf
chb01_36.edf, chb01 37.edf,

6 chb01_21.edf chb01 38.edf
chb01_39.edf, chb01_40.edf,

7 chb01_26.edf chb01 41.edf
chb02_02.edf, chb02_07.edf,
chb02_08.edf, chb02_09.edf,
chbo2 ! chb02_16.edf chb02_10.edf, chb02_11.edf,
chb02_12.edf, chb02_13.edf,
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chb02_14.edf

chb02_22.edf, chb02_25.edf,
chb02_28.edf, chb02_29.edf,

2 chb02_16+.edf chb02_30.edf, chb02_31.edf,
chb02_32.edf, chb02_33.edf,
chb02 34.edf
chb03_06.edf, chb03_07.edf,
1 chb03_01.edf ohb03, 08.edf
chb03_09.edf, chb03_10.edf,
2 chb03_02.edf chb03 11,047
chb03_12.edf, chb03_13.edf,
3 chb03_03.edf 03, 14.0df
chb03_15.edf, chb03_16.edf,
chb03 4 chb03_04.edf ohb03 17,047
chb03_18.edf, chb03_19.edf,
5 chb03_34.edf chb03, 20.0df
chb03_22.edf, chb03_23.edf,
6 chb03_35.edf ohb03 24047
chb03_29.edf, chb03_30.edf,
7 chb03_36.edf cHb03 31.0df
chb05_08.cdf, chb05_09.edf,
! chb05_06.edf chb05_10.edf, chb05_11.edf
chb05_20.edf, chb05_24.edf,
2 chb03_13.edf chb05_25.edf, chb05_26.edf
chb05_27.edf, chb05_28.edf,
chb0S 3 chb03_16.edf chb05_29.edf, chb05_30.edf
chb05_31.edf, chb05_32.edf,
4 chb03_17.edf chb05_33.edf, chb05_34.edf
chb05_35.edf, chb05_36.edf,
3 chb03_22.edf chb05_37.edf, chb05_38.edf
chb07_01.edf, chb07_02.edf,
! chb07_12.edf chb07_03.edf, chb07_04.edf
chb07_06.edf, chb07_07.edf,
chb07 2 chb07_13.edf chb07_08.edf, chb07_09.edf
chb07_10.edf, chb07_15.edf,
3 chb07_19.edf chb07_16.edf, chb07_17.edf
1 chb08_02.edf chb08_04.edf, chb08_10.edf
2 chb08_05.edf chb08_15.edf, chb08_16.edf
chb08 3 chb08_11.edf chb08_17.edf, chb08_18.cdf
4 chb08_13.cdf chb08_19.edf, chb08_20.cdf
5 chb08_21.edf chb08_23.edf, chb08_24.edf
1 chb09 06.cdf chb09_03.edf, chb09_04.cdf
1509 2 chb09 08.cdf chb09_09.edf, chb09_10.cdf
¢ 3 chb09 08.edf chb09_13.edf, chb09_14.edf
4 chb09 19.edf chb09_16.edf, chb09_17.edf
1 chbl3 19.cdf chb13_03.cdf, chbl3 04.cdf
2 chbl3 21.edf chb13_05.cdf, chbl3 06.edf
3 chb13_40.edf chb13_07.edf, chb13_08.edf
4 chb13 40.cdf chb13_09.cdf, chbl3_10.edf
13 5 chbl3 55.cdf chb13_11.edf, chbl3 12.edf
¢ 6 chb13_55.edf chb13_13.edf, chbl3_14.edf
7 chbl3 59.cdf chb13_15.cdf, chbl3_16.cdf
8 chb13 60.cdf chb13 24.cdf, chbl3 30.edf
9 chb13_62.edf chb13_36.edf, chbl3_37.edf
10 chb13_62.edf chb13_38.edf, chbl3_47.edf
chb19_06.cdf, chb19_07.edf,
1 chb19 28.edf chb19_08.edf, chb19_09.edf,
chb19 10.edf, chb19_11.edf
chb19_12.edf, chb19_13.edf,
chb19 2 chb19 29.edf chb19_l14.edf, chb19_15.edf,
chb19 16.edf, chb19 17.edf
chb19_21.edf, chb19_22.edf,
3 chb19_30.edf chb19_23.edf, chb19_24.edf,
chb19 25.edf, chb19 26.edf
chb22_02.edf, chb22_03.edf,
1 chb22_20.edf chb22_04.edf, chb22_05.edf,
chb22_06.edf, chb22 07.edf
chb22_08.edf, chb22_09.edf,
chb22 2 chb22 25.edf chb22_10.edf, chb22_16.edf,

chb22 17.edf, chb22 18.edf

chb22_38.edf

chb22 22.edf, chb22 23.edf,
chb22_27.edf, chb22_28.edf,
chb22_29.edf, chb22_30.edf
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