
  

  

Abstract— The COVID-19 pandemic is a global health crisis. 

Mental health is critical in such uncertain situations, 

particularly when people are required to significantly restrict 

their movements and change their lifestyles. Under these 

conditions, many countries have turned to telemedicine to 

strengthen and expand mental health services. Our research 

group previously developed a mental illness screening system 

based on heart rate variability (HRV) analysis, enabling an 

objective and easy mental health self-check. This screening 

system cannot be used for telemedicine because it uses 

electrocardiography (ECG) and contact photoplethysmography 

(PPG), that are not widely available outside of a clinical setting. 

The purpose of this study is to enable the extension of the 

aforementioned system to telemedicine by the application of 

non-contact PPG using an RGB webcam, also called imaging-

photoplethysmography (iPPG). The iPPG measurement errors 

occur due to changes in the relative position between the camera 

and the target, and due to changes in light. Conventionally, in 

image processing, the pixel value of the entire face region is used. 

We propose skin pixel extraction to eliminate blinks, eye 

movements, and changes in light and shadow. In signal 

processing, the green channel signal is conventionally used as a 

pulse wave owing to the absorption characteristics of blood flow. 

Taking advantage of the fact that the red and blue channels 

contain noise, we propose a signal reconstruction method for 

removing noise and strengthening the signal in the pulse rate 

variability (PRV) frequency band by weighting the three signals 

of the RGB camera. We conducted an experiment with 13 

healthy subjects, and showed that the PRV index and pulse rate 

(PR) errors estimated by the proposed method were smaller than 

those of the conventional method. The correlation coefficients 

between estimated values by the proposed method and reference 

values of LF, HF, and PR were 0.86, 0.69, and 0.96, respectively. 

I. INTRODUCTION 

Given the COVID-19 pandemic, telemedicine, offering the 
benefit of preventing contact with others, is drawing attention 

 
 

[1]. Some hospitals are flooded with patients experiencing 
symptoms like fevers and coughs that are not due to COVID-
19 [2]. Moreover, pandemic-related stressors are causing 
people to develop anxiety, depression, sleep disorders, and 
other signs of stress [3]. In this situation, providing 
telemedicine to patients who are not infected with COVID-19 
will reduce the hospital burden. 

The inter-beat interval (IBI) is regulated by the autonomic 
nervous system and varies in response to changes in physical 
and emotional states. The temporal change in IBI is called 
heart rate variability (HRV); this measure is used in the 
objective and quantitative evaluation of autonomic nervous 
system (ANS) activity. The ANS comprises the sympathetic 
nervous system and the parasympathetic nervous system, the 
former being active during tension and the latter during 
relaxation. Both the sympathetic and parasympathetic nerves 
act on the low-frequency component (LF: 0.04~0.15 Hz) of 
HRV, and the parasympathetic nerves act on the high-
frequency component (HF: 0.15~0.40 Hz) of HRV [4]. The 
low-frequency component value divided by the high-
frequency component value, LF/HF, is used as an index of the 
sympathetic nervous system. Imaging-photoplethysmography 
(iPPG) is a non-contact technique that uses a camera to 
measure the blood volume pulse (BVP). Since BVP 
corresponds to the beating of the heart, heart rate (HR) and 
HRV can be replaced by pulse rate (PR) and pulse rate 
variability (PRV) obtained from BVP [5]. 

Our research group previously revealed changes in the 
responsiveness of autonomic nervous system activity in 
mental illness by measuring HRV at rest and during a task [6]. 
Building on this work, we have developed a mental illness 
screening system using HRV indices and machine learning 
[7,8]. The system uses an ECG and contact PPG to measure 
IBI. Because ECG equipment is usually only available in 
clinical settings, replacing ECG with iPPG extends the system 
availability to many more people. As such, the proposed iPPG-
based mental illness screening system is expected to support 
and promote telepsychiatry. Nevertheless, iPPG does pose a 
challenge: unlike contact-based methods of HRV 
measurement, iPPG is affected by changes in the relative 
position of the measurement target and the sensor, and by 
changes in light. The resultant low accuracy of the PRV 
indices poses a problem when applying iPPG to the system. In 
this study, we propose two new analysis methods to improve 
the accuracy of PRV and PR values obtained from iPPG 
signals. At the image processing stage, we propose skin pixel 
extraction to extract only skin pixels from the facial image 
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captured by the camera, eliminating remove motion artifacts 
and specular reflection. At the signal processing stage, we 
propose signal reconstruction using spectral information to 
strengthen the signal in the PRV frequency band by the 
weighted sum of RGB signals. This is inspired by SoftSig, 
which utilizes the fact that the iPPG signal amplitude depends 
on the wavelength [9]. To assess the proposed method, we 
conducted an experiment on 13 healthy subjects in a laboratory 
setup. 

II. MATERIALS AND METHODS 

Figure 1 shows an overview of the entire analysis method. 
First, a front view of the person is captured by the camera, and 
OpenCV face detection is performed. Next, the pulse signal is 
estimated. At this stage, the proposed methods, that are skin 
pixel extraction and signal reconstruction using spectral 
information, are performed. The estimated PR is calculated 
from the frequency with the strongest power in the 0.7~2 Hz 
range of the power spectral density (PSD) of the estimated 
pulse signal of each method. Subsequently, the low-frequency 
component is removed by subtracting the estimated pulse 
signal filtered with a moving average of the 1.43 second 
window from the original estimated pulse signal. Then, the 
beats are detected from the signal, and the IBI is calculated. 
Raw IBI is unequally spaced, so a 100 Hz cubic spline 
interpolation is performed on the data for frequency analysis. 
Then, IBI is filtered with a moving average of the 2.5 second 
window. LF and HF are obtained by integrating the PSD of IBI 
over the 0.04~0.15 Hz and 0.15~0.40 Hz ranges, respectively. 
We use a fast Fourier transform (FFT) to calculate all PSDs.  

A. Skin Pixels Extraction 

First, the thresholds of the pixel values of the skin are 
calculated from a certain frame of the video (automatic 
threshold calculation). Next, skin pixels are extracted from 
each frame using the thresholds. 

The origin is in the upper left corner of the image taken by 
the camera, with horizontal coordinates increasing toward the 
right, and vertical coordinates increasing toward the bottom. 
OpenCV face detection is performed on the image after the 
camera is activated and automatic settings such as focus and 
exposure are stable. The detected face is represented by the 
coordinates of the rectangular area. The coordinates of the 
vertices of the rectangular face region are expressed as follows, 
clockwise from the upper left: 

(𝑙𝑓𝑎𝑐𝑒 , 𝑡𝑓𝑎𝑐𝑒), (𝑟𝑓𝑎𝑐𝑒 , 𝑡𝑓𝑎𝑐𝑒), (𝑟𝑓𝑎𝑐𝑒 , 𝑏𝑓𝑎𝑐𝑒), (𝑙𝑓𝑎𝑐𝑒 , 𝑏𝑓𝑎𝑐𝑒). (1) 

From the detected face, the upper part of the nose, which 
contains only the skin, is selected as the region of interest for 
automatic threshold calculation. The coordinates of this skin 
region are calculated by the following equations, using the 
coordinates of the face: 

𝑙𝑠𝑘𝑖𝑛 = 𝑙𝑓𝑎𝑐𝑒 + (𝑟𝑓𝑎𝑐𝑒 − 𝑙𝑓𝑎𝑐𝑒) × 0.3, (2) 

𝑟𝑠𝑘𝑖𝑛 = 𝑟𝑓𝑎𝑐𝑒 − (𝑟𝑓𝑎𝑐𝑒 − 𝑙𝑓𝑎𝑐𝑒) × 0.3, (3) 

𝑡𝑠𝑘𝑖𝑛 = 𝑡𝑓𝑎𝑐𝑒 + (𝑏𝑓𝑎𝑐𝑒 − 𝑡𝑓𝑎𝑐𝑒) × 0.48, (4) 

𝑏𝑠𝑘𝑖𝑛 = 𝑏𝑓𝑎𝑐𝑒 − (𝑏𝑓𝑎𝑐𝑒 − 𝑡𝑓𝑎𝑐𝑒) × 0.42, (5) 

where 𝑙𝑠𝑘𝑖𝑛 , 𝑟𝑠𝑘𝑖𝑛, 𝑡𝑠𝑘𝑖𝑛, and 𝑏𝑠𝑘𝑖𝑛 represent the left, right, top, 
and bottom coordinates of the skin region, respectively, and 
𝑙𝑓𝑎𝑐𝑒 , 𝑟𝑓𝑎𝑐𝑒, 𝑡𝑓𝑎𝑐𝑒 , and 𝑏𝑓𝑎𝑐𝑒 represent the left, right, top, and 

bottom coordinates of the detected face, respectively. The 
RGB image of the skin region is converted into the HSL image. 
The pixel values of the 1.5 percentile and 98.5 percentile of 
each histogram of H, S, and L are selected as the lower and 
upper thresholds, respectively. 

The following operations are performed for each frame of 
the face video. A window is created that holds pixels within 
the skin-pixel thresholds. The window is applied to the RGB 

Figure 1. An overview of the analysis method. (a) RGB camera, (b) An example of the RGB image of the OpenCV detected face, (c) An example of the 
RGB image of the extracted skin pixels, (d) The conceptual diagram of the signal reconstruction using the spectral information, (e) An example of the 
waveform of the IBI, (f) An example of the PSD of the IBI. 
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image of the detected face, and only skin pixels are extracted 
as shown in Figure 1 (c). 

B. Signal Reconstruction Using the Spectral Information 

The relative PPG amplitude is G>B>R. As such, the green 
signal is considered to have a strong pulse wave component, 
the red signal to have a strong noise component, and the blue 
signal to include both. The green signal is multiplied by a 
coefficient selected in the range 0.1 to 1, and the red and blue 
signals by a coefficient selected in the range -1 to 1; then the 
results are added. This effectively removes noise and enhances 
the pulse wave component. The weighted sum of RGB signals 
is shown below. 

𝐶 = [𝑣𝑅 𝑣𝐺 𝑣𝐵] [
𝑅
𝐺
𝐵
] , (6) 

where 𝐶  is the weighted sum signal, 𝑣𝑅 , 𝑣𝐺 , and 𝑣𝐵  are the 
weighting coefficients (scalar values), and 𝑅, 𝐺, and 𝐵 are the 
signals that are calculated from the spatial mean values of the 

RGB images of the extracted skin video. The combination of 

coefficients that maximizes the signal-to-noise ratio (SNR) of 
the PRV frequency band in the PSD of the weighted sum 
signal is selected as the optimum weighting coefficient. The 
SNR is defined by the following formula: 

𝑆 =
∫ 𝑃(𝑓)𝑑𝑓
𝑓𝑝+0.4

𝑓𝑝−0.4

∫ 𝑃(𝑓)𝑑𝑓
𝑓𝑝−0.4

0
+ ∫ 𝑃(𝑓)𝑑𝑓

𝑓𝑛
𝑓𝑝+0.4

, (7) 

where 𝑆 is the SNR, 𝑓 is the frequency, 𝑃(𝑓) is the PSD of the 
weighted sum signal 𝐶, 𝑓𝑝 is the frequency with the strongest 

power in the 0.7~2 Hz range, and 𝑓𝑛 is the Nyquist frequency 
of 𝐶 . Unlike SoftSig [9], the characteristic feature of this 
method is that it strengthens the signal component not only in 
the PR frequency 𝑓𝑝 Hz but also in the PRV frequency band 

𝑓𝑝 ± 0.4  Hz. The estimated pulse signal is obtained by 

substituting the combination of weighting coefficients with the 
largest SNR into (6). Similarly, the POS [10] method referred 
in the paper [11] extracts a pulse signal by a weighted sum of 
RGB signals. It changes the weighting coefficients slightly 
using a fixed projection matrix and “alpha tuning” [10]. On the 
other hand, the signal reconstruction method in this paper 
freely changes the balance of the coefficients according to 
signal conditions. 

C. Experimental Setup 

To evaluate the accuracy of the estimated indices, the 
simultaneous measurement of iPPG and ECG was performed 
for 13 healthy students and faculty members (10 males and 3 

females) of The University of Electro-Communications and 
Tokyo Metropolitan University. The experimental setup is 
shown in Figure 2. For iPPG acquisition, the RGB videos of 
the faces were recorded at 30 fps with a resolution of 1440 × 
1080 using a Logicool C922 Pro Stream WebCam. The 30 Hz 
raw RGB signals were resampled to 300 Hz at the beginning 
of the signal processing stage. The distance between the 
camera and the subjects was about 50 cm. ECG was recorded 
at 300 Hz using a GMS memory heart rate monitor LRR-03 
and a National Instruments DAQ USB-6003. 

Three ECG electrodes were attached to each subject’s 
wrists. We measured iPPG and ECG twice each for 2 min at 
rest and used the central 90 seconds of them for analysis. As 
the measurements were taken in a room with windows, the 
subjects’ faces were exposed to light emanating from two 
sources, the ceiling lights and sunlight. To evaluate the 
performance of the proposed method, the accuracy of the 
results of each PRV index calculated by the proposed method 
were compared with those calculated by the conventional 
method. The difference between these two methods is the 
pulse wave estimation. In the conventional method, the signal 
of the spatial mean value of the green channel image of the 
entire face region detected by OpenCV is used as the estimated 
pulse signal. The correlation coefficient and the root mean 
square error (RMSE) with the reference value were used as 
evaluation indices. This study was approved by the Ethics 
Committee of Tokyo Metropolitan University and The 
University of Electro-Communications. All subjects gave their 
informed written consent. 

III. RESULTS AND DISCUSSION 

Tables 1 and 2 show the correlation coefficient and RMSE, 
which represent the estimation accuracy of each index. Figure 
3 (a), (b), and (c) show scatter plots depicting the relationship 
between the estimated value and the reference value of each 
index. These results indicate that the proposed method is 
effective in removing noise for all indices. Figure 3 (d), (e), 
and (f) show the Bland-Altman plots of each index. The 95% 
confidence interval represented by the chain line is narrower 
in the proposed method than in the conventional method. From 
this, it can be concluded that the proposed method improves 
the estimation of each index. When LF and HF were estimated 
by the conventional method, the error was mostly positive, due 
to a slight deviation of the estimated value of the pulse time 
causing vibration of IBI and strengthening the power in the LF 
or HF frequency band. However, when LF and HF were 
estimated by the proposed method, the error was neither 
positively nor negatively biased. Thus, it can be concluded that 
the proposed method improved the estimation of the beat 
timing. 

TABLE I.  THE CORRELATION COEFFICIENTS BETWEEN ESTIMATED 

VALUES AND REFERENCE VALUES OF EACH INDEX. 

Index 
Correlation Coefficient 

Proposed method 
Conventional method 

(Green channel) 

LF 0.75 0.03 

HF 0.50 0.05 

PR 0.96 -0.06 

 Figure 2. Experimental setup. 
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TABLE II.  THE ROOT MEAN SQUARE ERROR OF EACH INDEX. 

Index 
Root Mean Square Error 

Proposed method 
Conventional method 

(Green channel) 

LF [10−3s2] 1.73 12.94 

HF [10−3s2] 1.15 5.20 

PR [bpm] 2.9 16.1 

 

IV. CONCLUSION 

In this study, we proposed an iPPG analysis method using 
skin pixel extraction and signal reconstruction using spectral 
information to improve the accuracy of the estimated PRV 
indices and PR. We conducted the experiment in a laboratory 
setup to evaluate the proposed method. The results showed that 
the proposed method is effective in reducing the estimation 
error in the PRV indices and PR. 

Because skin pixels are extracted from the entire video 
using skin color information from a certain point in time, no 
skin pixels may be extracted if the subject moves significantly 
or the light changes. It is, therefore, necessary to reconsider 
how to select the skin image to which the threshold calculation 
refers, so that the skin pixel extraction approach can be applied 
across a greater variety of situations. There is room for 
reconsidering the definition of the PRV frequency band used 
in signal reconstruction. In this study, we used constants 
empirically. As the PRV tends to weaken as the PR increases, 
the PRV frequency band can be defined using the PR. 

In future work, we will evaluate the proposed method 
during utterances because our mental illness screening system 
uses utterance as a mental task. We also aim to improve the 
estimation accuracy of LF/HF, which is an index of only the 
sympathetic nervous system. 
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