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Abstract— The use of ECG in cardiovascular health monitor-
ing is well established. The signal is collected using specialised
equipment, capturing the electrical discharge properties of the
human heart. This produces a well-structured signal trace,
which can be characterised through its peaks and troughs.
The signal can then be used by clinicians to diagnose cardiac
disorders. However, as with any measuring equipment, the ECG
output signal can experience deterioration resulting from noise.
This can happen due to environmental interference, human
issues or measuring equipment failure, necessitating the devel-
opment of various denoising strategies to reduce, or remove,
the noise. In this paper, we study typically occurring types of
noise and implement popular strategies used to rectify them.
We also show, that the given strategy’s denoising potential is
directly related to R-wave detection, and provide best strategies
to apply when faced with specific noise type.

I. INTRODUCTION

Electrocardiography (ECG) is the study of the electrical
activity of the heart. It is used clinically in the diagnosis
of cardiac disorders such as atrial fibrillation [1]. ECG
measures the relative change of electric potential in the
body, exploiting the conductive properties of human skin.
As such, the depolarisation and subsequent repolarisation of
the cardiac muscle provides a well-structured signal trace,
which can be characterised through specific intervals and
segments, so called QRS complex [2]. One drawback of
ECG is the possibility of the signal being corrupted with
various types of noise, be it due to the nature of measuring
equipment, human physiology or a random circumstance.
This can cause misdiagnosis and can potentially hinder the
efforts of clinicians [3]. A substantial body of literature
concerned with denoising strategies, aimed specifically at
ECG signals [4], [5], [6] can be attributed to the importance
of ECG, especially in clinical settings.

A variety of methods have been designed and/or appropri-
ated from different fields [7] to remove noise from ECG data,
among them Discrete Wavelet Transform (DWT), Empirical
Mode Decomposition (EMD), Variational Mode Decompo-
sition (VMD), Non-local Means (NLM) and others. In the
recent years, a number of implementations based on Deep
Neural Networks (DNN) [8] and Variational Autoencoders
(VAE) [9] have gained traction but are yet to enjoy the
same popularity as above mentioned analytical methods.
Ultimately, the choice of the denoising strategy is dictated
by the application area, condition of the ECG signal and its
response to each denoising method [5].
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DWT methods have become the de-facto preference of the
community in the recent years [2], [6], [4]. By combining
both, time- and frequency-domain analyses, DWT is well
suited to inherently non-stationary signals such as ECG [5],
[2]. These methods use wavelet functions to decompose the
signal, along with its afflicting noise, into approximating
components. These components are later used to find and
remove the potential sources of noise, and for its subsequent
reconstruction [4].

The use of the above methods in conjuction with one
another also presents a viable denoising strategy, especially
when accounting for each method’s individual shortcomings.
Indeed, the use of combined approaches has been studied
before [5], [10]. Significant attention has also been given to
methods based on EMD and VMD respectively [11], [12].
A study done by Lahmiri [5] compared the use hybridised
methods based on EMD and VMD pre-processing and
subsequent DWT thresholding using a variety of wavelets.
This in particular includes the use of EMD and VMD,
which are used as an initial pre-processing step for further
decomposition and thresholding using DWT. The authors in
[10] have used NLM as an initial step before decomposing
the signal with EMD.

In this exploratory study, we focus on the effects of the
most popular denoising strategies on various, commonly
occurring types of noise, showing how capable the method
is when faced with particular noise modality. We then use
expert annotation as groundtruth, for the subsequent detec-
tion of the R-wave under said noise conditions and provide
the strategy best suited to their denoising. We implement
and test various denoising strategies capable of dealing with
common types of noise. We then perform a validation of the
methods using popular R-wave detection algorithm. Finally,
we show the effects of various denoising strategies on R-
wave detection.

The paper is structured as follows: First, in Section II we
introduce the dataset, including the types of noise. We then
address the methods contained therein in Section III. We
explain the experimental setup in Section IV and show the
results in Section V. We conclude in Section VI.

II. DATA

A. Types of noise

This paper will consider common types of noise, emblem-
atic of physiological data [13]. These include Additive White
Gaussian Noise (AWGN), Baseline Wander (BW), Power-
line Interference (PL) and Motion Artefacts (MA). This list
should not be treated as exhaustive - these types of noise
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have been chosen to best exemplify the signal collected ’in-
the-wild’.

1) Additive White Gaussian Noise: AWGN is a common
model of signal noise, stipulating equal energy across all
spectral bands. This type of noise is naturally occurring
and is often described as being accountable for a variety of
deficiencies stemming from imperfect information channels,
such as ECG leads [13].

2) Baseline Wander: BW is noise typical to idle physio-
logical function [14]. Its source can be attributed to patient
respiration or motion artefacts [15]. It is manifested as a
low-frequency oscillation of the ECG.

3) Power-line Interference: This type of noise frequently
happens due to the exposure to the power line of the device,
either through its cables or the patients themselves [16]. It
can be shown to be a steady 50/60Hz oscillation on top of
the desired signal.

4) Motion Artefact: As a result of the movement brought
on by the patient’s, the electrodes can shift, resulting in
a gradual wander of the signal as well as transient, high
frequency oscillation [13].

B. Databases

In this work, we employ the MIT-BIH Arrhythmia
Database [17], [18], commonly used for validating state-
of-the-art algorithms [19]. It includes a total of 46 MLII-
lead signals which we use for the analysis of the signal in
the presence of noise. Here, we utilise the signals, sampled
at 360Hz, of one minute in length. In order to synthesise
the noise on the ECG signal we further utilise the MIT-BIH
Noise Stress Database [20]. The database includes the noise
extracted from ECG signals, which we make use of in our
work, particularly BW and MA.

III. METHODS

A. Denoising fundamentals

1) Discrete Wavelet Transform: DWT considers the use
of low- and high-pass filter banks as a decomposition mech-
anism [21]. This ensures that, in the process, the signal
along with the overlaying noise is decomposed as part of
their low-frequency approximation coefficients and high-
frequency details. The process of decomposition to a signal
level is formalised, for low and high pass filter banks, as
follows [21]:

A[k] =
∑
N

x[n]× h[2k − n] (1)

D[k] =
∑
N

x[n]× g[2k − n] (2)

2) Stationary Wavelet Transform: SWT is intimately re-
lated to DWT, with the exception of oversampling of the
coefficients. The main difference between DWT and SWT
is the lack of decimation step during the convolution of
the signal [22], instead padding with zeros. This results in
the decomposed levels maintaining the length of the original
signal.

3) Empirical and Variational Mode Decomposition: EMD
is based on the assumption of non-stationary and non-linear
nature of the signals, often exhibited in ones collected ’in-
the-wild’ [23]. The basic formulation of the EMD makes use
of Intrinsic Mode Functions (IMFs), which can be defined
as the decomposition of signal into n empirical modes and
residue given by [5]:

x(t) =

n∑
i=1

c(i) + rn (3)

where x(t) is our signal, c(i) is the IMF and rn denotes the
residue at level n.

VMD decomposes the signal into Variational Mode Func-
tions (VMFs), by extracting the signal’s center frequency ωn

along with modes un at level n. It follows that the sum of all
modes, across all levels, would be the original signal [23].

4) Non-local Means: NLM approach has been explored in
ECG before [10]. The basic assumption is that the samples
exhibit a non-local similarity due to their structured form.
The idea behind NLM, is that denoising follows an estimate
of the surrounding samples, windowed in patches. As such:

û(m) =
1

Y (m)

∑
n∈N(m)

w(m,n)x(n) (4)

For further notes about NLM applied to ECG denoising,
we refer to [10].

5) IIR Filtering: We additionally employ a simple IIR
comb filter, centered on 60Hz, as a basic measure of de-
noising. A 60Hz element, along with its harmonics, can
be easily removed with a comb filter. This method will be
used as a control of other denoising approaches, in order to
establish whether basic filter is capable of outperforming an
engineered denoising solution.

IV. EXPERIMENTAL SETUP

In this section we will outline the experimental setup,
which served as a platform for the evaluation of the method-
ologies under various noise stress conditions. The synthesis
depends on the source of the signal: for simple AWGN and
PL noise the use MATLAB functions (MATLAB 2020b) is
sufficient to create a viable testbed. Noise such as MA and
BW was taken from the Noise Stress database, and as such,
is not subject to randomness. Here we assume that we have
access to the entirety of the recording for each noise type (>
30 mins for MA and BW). This is also the main assumption
behind the use of only 1 minute data segments from MIT-
BIH Arrythmia database - the type of noise and its length
greatly affects the denoising result.

A. Denoising Evaluation

In order to evaluate the performance of the denoising
strategies, we use 2 distinct signal evaluation metrics - SNR
improvement and Mean Square Error (MSE). These metrics
are considered state-of-the-art in literature [24] and have
been previously used to evaluate methods which make use
of MIT-BIH Noise Stress test database [24]. To formalise the
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TABLE I
TABLE OF DENOISING PARAMETERS FOR DIFFERENT METHODOLOGIES.

Method Params
Wavelet-based Wavelet −→ sym4

Threshold −→ soft SURE
Decomp level −→ 4

NLM Patch width −→ 15
Search Neighbourhood −→ 50

IIR Q factor −→ 10
Center frequency −→ 60Hz

methods, given a true signal x(n), its noise-polluted version
y(n) and a denoising output estimate x̂(n), we can define
the metrics for N signal instances as follows:

SNRimp = 10× log ×
∑N

n=1(y(n)− x(n))2∑N
n=1(x̂(n)− x(n))2

(5)

MSE =

∑N
n=1(x(n)− x̂(n))2

N
(6)

B. R-wave Detection Evaluation

In order to perform R-wave detection, we use the available
MIT-BIH Arrythmia annotations. We assume that the anno-
tations of a Normal, Paced, Left and Right Bundle Branch
constitute a viable heartbeat for our analysis. We further
utilise the Pan-Tompkins QRS detector [25], [26] due to its
versatility and popularity. To evaluate the peak detection we
use sensitivity and accuracy analysis, given by [27].

V. RESULTS

A. AWGN-based denoising

The use of AWGN as a basis for denoising shows how
the capabiity of each strategy when faced with random
perturbations. As the SNR of the system decreases, so does
the denoising potential of all employed strategies. Top half
of Figure 1 shows the effects of all denoising methods
with decreasing AWGN noise. Understandably, the worst
performing of method is IIR COMB, incapable of reducing
the noise floor of the signal across all frequencies. When
averaged across all inputs, DWT shows the largest relative
improvement in SNR. This is likely due to the fact, that
during the decomposition of the signal, the ECG trace is the
most evident signal structure, and is clear enough for the
algorithm to threshold properly.

B. PL/MA/BW-based denoising

The bottom half of Figure 1 shows the MSE result for the
various denoising strategies, as applied to different type of
noise. The denoising of PL understandably yields the best
result on average, as this type of noise is highly predictable,
structured and at high frequency. Conversely, due to the
low-frequency nature of BW, the methods which are mostly
capable at denoising higher-frequency components, struggle
when presented with this type of noise. This is evident in
Figure 2. The best performing strategy for MA was found
to be NLM, performing well when faced with transient high
frequency noise.

The addition of IIR COMB in method comparison showed
that the use of a simple filter can be viable in the face of

Fig. 1. SNR improvement (top) of various denoising and filtering methods
per decreasing AWGN noise and MSE per noise type (bottom) for each
denoising strategy.

typical noise. This can be attributed to its relative simplicity
over other methods - note that the parameters governing the
methods were not optimised over each noise type, opting
instead for a general approach, which gave best results on
average. This can also explain the poor performance of the
EMD-based methods on BW - it is likely that the extraction
of the final residual was poor, compared to the removal
of transient high-frequency noise, such as MA, or more
structured noise such as PL.

C. R-wave detection

The analysis of the denoising data showed that, in the list
of denoising strategies we consider in this work, there exist
clear choices of strategy when faced with a particular type of
noise. This is tabulated in Table II. The table considers the
performance of the R-peak detection after the denoising for
various methods. The best-performing strategies have been
emboldened along with their performance in each category.

Among the understandable results, such as the prevalence
of IIR COMB for PL and BW, the table also shows that the
NLM-based methods tend to dominate in FP discrimination,
likely owing due to the removal of high frequency compo-
nents of the signal.

VI. CONCLUSION
This study showed the importance of appropriate denois-

ing strategy in ECG analysis. It has also addressed the perfor-
mance of R-peak detection when applied to various denoised
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TABLE II
R-PEAK DETECTION RESULTS. NOTE, THAT THESE RESULTS INDICATE

PER-BEAT RESULTS USING ANNOTATIONS FROM MIT-BIH.

Type Method TP FN FP Sen Acc
5dB DWT 3222 4 100 99.87% 96.87%

AWGN SWT 3221 5 106 99.84% 96.66%
EMD DWT 3224 2 105 99.93% 96.78%
VMD DWT 3222 4 99 99.87% 96.90%

NLM 3197 29 88 99.10% 96.46%
EMD NLM 3198 28 93 99.13% 96.35%
IIR COMB 3223 3 100 99.90% 96.90%

PL DWT 3224 2 93 99.93% 97.13%
SWT 3224 2 95 99.93% 97.07%

EMD DWT 3224 2 97 99.93% 97.02%
VMD DWT 3224 2 94 99.93% 97.10%

NLM 3195 31 93 99.03% 96.26%
EMD NLM 3192 34 92 98.94% 96.20%
IIR COMB 3224 2 95 99.93% 97.07%

BW DWT 3224 2 94 99.93% 97.10%
SWT 3224 2 94 99.93% 97.10%

EMD DWT 3224 2 95 99.93% 97.07%
VMD DWT 3224 2 97 99.93% 97.02%

NLM 3159 67 96 97.92% 95.09%
EMD NLM 3136 90 93 97.21% 94.48%
IIR COMB 3224 2 95 99.93% 97.07%

MA DWT 3222 4 108 99.87% 96.64%
SWT 3223 3 107 99.90% 96.69%

EMD DWT 3224 2 111 99.93% 96.61%
VMD DWT 3224 2 112 99.93% 96.58%

NLM 3180 46 97 98.57% 95.69%
EMD NLM 3187 39 95 98.79% 95.96%
IIR COMB 3224 2 106 99.93% 96.75%

signals, and that the autonomous R-peak detection can be
improved when using an engineered denoising strategy.

Further work would study the combinations of noise
modalities and their effect on the R-peak detection.
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