
Design and optimization of a TensorFlow Lite deep learning neural
network for human activity recognition on a smartphone

Salah Eddin Adi and Alexander J. Casson, Senior Member, IEEE

Abstract— Human Activity Recognition (HAR), using ma-
chine learning to identify times spent (for example) walking,
sitting, and standing, is widely used in health and wellness
wearable devices, in ambient assistant living devices, and in
rehabilitation. In this paper, a stacked Long Short-Term Mem-
ory (LSTM) structure is designed for HAR to be implemented
on a smartphone. The use of an edge device for the processing
means that the raw collected data does not need to be passed to
the cloud for processing, mitigating potential bandwidth, power
consumption, and privacy concerns. Our offline prototype
model achieves 92.8% classification accuracy when classifying
6 activities using a public dataset. Quantization techniques are
shown to reduce the model’s weight representations to achieve a
>30x model size reduction for improved use on a smartphone.
The end result is an on-phone HAR model with accuracy of
92.7% and a memory footprint of 27 KB.

I. INTRODUCTION

Human Activity Recognition (HAR), using machine learn-
ing to identify times spent (for example) walking, sitting, and
standing, is widely used in health and wellness wearable
devices, in ambient assistant living devices, and in reha-
bilitation [1]. As a result, there have been many papers
published in recent years aiming to perform offline HAR
using accelerometry or similar signals collected from a
smartwatch or smartphone [2]. In addition to improving the
accuracy of HAR algorithms, there is an ongoing need to
allow HAR to be implemented in the edge device itself,
particularly on smartphones. Current offline data analysis
models typically rely on passing all of the raw collected data
to a PC or the cloud for processing there. While this allows
large scale data collection and analyses to be performed,
transferring all of the raw data requires bandwidth which
may be prohibitive to all users, and moreover potentially
raises security and privacy concerns [3]. In contrast edge
processing in a local smartphone means that the raw data
never needs to leave the physical locality of the user.

A wide number of edge algorithms are thus currently being
investigated [4] and recently many deep learning approaches
have been investigated for on-phone data classification. For
example [5], [6] proposed deep Cellular Neural Networks
(CNNs) for HAR using smartphone sensor data. In our previ-
ous 2019 work, [7], [8], we presented CNN and Long Short-
Term Memory (LSTM) deep networks for implementing
HAR on a smartphone. These used the TensorFlow library [9]
and with optimizations for on-phone use achieved accuracies
of 93.6% and 93.5% respectively in a six class classification

The authors are with the Department of Electrical and
Electronic Engineering, The University of Manchester, UK. Email:
alex.casson@manchester.ac.uk.

problem, with a memory footprint of 2.1 MB and 4.1 MB
respectively.

Although CNNs have displayed promising performances
for HAR classification, they use the spatial dependencies
of local data to extract features, rather than using the
temporal correlations between sequences of data expected
during different movements. In contrast, LSTMs exploit the
temporal relations by retaining information about previous
samples in time to make contextual decisions. Theoretically,
LSTMs are better-suited for classifying HAR time-series
data, where an activity is the result of multiple sequences
of motion related to each other, rather than an isolated snap-
shot. However LSTMs are under-explored in the literature
compared to CNN models for edge-device implementation.
LSTMs have previously struggled with edge implementation
due to network complexity, heavy computation burden, high
memory footprint, and a lack of library support. For example,
[10] deployed an LSTM for HAR, by using TensorFlow
on Raspberry Pi class hardware. [8] also used the full
TensorFlow library, on a smartphone target.

TensorFlow Lite is the reduced subset of TensorFlow
targeting low power, low memory, phone and embedded
microprocessor implementations. As part of TensorFlow de-
velopment in 2020, support was added for LSTM models to
be converted from TensorFlow to TensorFlow Lite for use
on edge devices. This requires TensorFlow versions 2.3 and
later [11]. This paper presents a TensorFlow Lite implemen-
tation of a stacked LSTM structure designed to allow HAR to
be run on a smartphone with minimum memory impact. We
show the significant improvements that are now possible with
minimal impact on classification performance, and indeed the
memory footprint is now within the range required to allow
the network to fit in the very limited memory size of a typical
embedded device.

The remainder of this paper is structured as follows.
Section II introduces our LSTM structure, the dataset used,
and the implementation and optimization for use in Android.
Section III presents the performance results, showing the
classification accuracy and memory footprint. Finally, Sec-
tion IV discusses the results and draws conclusions.

II. METHODS

A. Dataset

We make use of the publicly available UCI-HAR dataset
[12] as it is widely used and allows easy comparison to many
previously reported HAR works. The UCI-HAR dataset
consists of data recorded from 30 volunteers using a smart-
phone’s (Samsung Galaxy S II) embedded accelerometer and

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 7028

gyroscope at a sampling rate of 50 Hz. There are a total of
9 sensor channels consisting of triaxial total acceleration,
triaxial linear acceleration (obtained from subtracting the
gravitational component from the total acceleration), and
triaxial angular velocity from the gyroscope. Each data entry
for each channel is composed of a fixed sliding-window of
2.56 seconds or 128 successive samples, with a 50% overlap.

There are a total of 10,299 data entries for each sensor
channel, which have already been split in the downloaded
dataset into training and testing datasets, using a 70/30
train/test split. Each data entry has its own associated activity
label from possible 6 activities, namely: Walking; Walking
upstairs; Walking downstairs; Sitting; Standing; and Lying.
The dataset also contains handcrafted features, but in this
work we only make use of the accelerometer and gyroscope
time series allowing the deep learning to generate its own
feature representation of the signals.

B. Offline prototype network design

The design process for making an on-phone TensorFlow
Lite model begins with making an offline prototype in
TensorFlow which can run on a standard PC. We make use of
a stacked LSTM structure as these have shown an increased
robustness and performance for generalization and improved
temporal pattern recognition [8], [10]. The LSTM model is
designed, trained, and tested using TensorFlow 2, with our
final network structure shown in Fig. 1. The stacked LSTM
structure uses two hidden LSTM layers that are responsible
for extracting temporal feature-maps from the input data. To
ensure that the output of the first layer is reshaped into a
3D input to the second LSTM layer, the return sequence
parameter is set to True.

After the feature-map is extracted, it is passed into
fully-connected dense layers, with batch normalization and
dropout, for classification. Two dense layers are used as
the feature-map should first be narrowed down into a larger
classification set, before being passed to the final dense layer
for activity classification. The first dense layer applies a
ReLU activation function to add non-linearity to the feature-
map. The second dense layer uses a soft-max activation
function that calculates the probability of each of the six
activity labels for the current time window. The LSTM is
stateless, which means that the LSTM cell is reset after each
batch of training data. A stateful LSTM would allow for
variable batch sizes and more flexibility to manually reset the
cell’s state to retain data from previous batches. However, a
stateful LSTM uses a lot of memory, is more complex, and
is not supported for conversion using TensorFlow Lite at
present. The network was training using the Adam optimizer
with learning rate of 0.001 and a batch size of 64.

In Section III, in addition to using the prototype model
of Fig. 1 to transfer to TensorFlow Lite, we also report the
performance of using different numbers of stacked layers and
different numbers of units per LSTM layer. For this optimiza-
tion analysis, performance is reported for the training data
set, and a 20% validation set split from this, with the test
data held out for analysis only with the final model to avoid

Fig. 1. Prototype LSTM structure for conversion to a TensorFlow Lite
model. The number of hidden layers (here shown as 2 as the final value
used), and the number of units in each hidden layer (here shown as 16
as the final value used) are varied in Section III prior to TensorFlow Lite
conversion to investigate the effect on performance.

potential bias in the optimization. Classification performance
is reported via the accuracy, defined as

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where symbols have their standard meanings for true posi-
tive, true negatives, false positives, and false negatives [4].
Recall, precision and F1 score are used with their standard
definitions. Training and testing was performed on a Mac-
Book Pro with a 2.2 GHz Intel i7 processor and 16 GB RAM.
No GPU acceleration was used, and the reported training
times indicative of this.

C. TensorFlow Lite network design

The pre-trained prototype model from Section II-B was
taken as the starting point, and saved in the protocol buffer
(.pb) format, which had a size of 1.9 MB. The Tensor-
Flow Lite Python converter was then used to transform the
TensorFlow operations by fusing them together to generate

7029

Fig. 2. Screenshot of the TensorFlow Lite LSTM HAR app showing the
probability of each activity class. Probabilities are updated every 2.56 s in
response to a new window of data being received.

a TensorFlow Lite (.tflite) model with limited operations.
This model was saved in a compressed FlatBuffer format,
capable of performing cross-platform serialization without
the need to parse the entire file. This has the effect of making
the models more memory and speed efficient for running
inference on edge devices.

In order to perform inference on a device using the
TensorFlow Lite model, it must be run through an inter-
preter Application Programming Interface (API). There are
interpreter APIs available for multiple platforms including
Python, Java, C++, and Swift [11]. The TensorFlow Lite
model’s accuracy is first evaluated using the Python inter-
preter API on a PC. The model was then embedded into an
Android application with the Java API. For this, an Android
HAR app was designed in Android studio, compatible with
Android smartphones with minimum API version 24 that are
also equipped with a gyroscope and accelerometer for data
collection. Here results are simulated on a Google Pixel 2
(API 30) smartphone using the Android Emulator on a PC in
order to be as agnostic as possible to the chosen deployment
device(s). A screenshot of the app is shown in Fig. 2. The
application displays the output predictions for each activity
class, and these probabilities are updated for every window
of input data received, i.e. every 2.56 s. The Java interpreter
API and TensorFlow Lite Android support library are used
to run the model for inference on the simulated smartphone.
The application is run using a single thread CPU, with no
GPU or Neural-Networks API (NNAPI) acceleration. The
Android studio profiler is then used to monitor the power
consumption of the application between light, medium, and
high states.

The default conversion converts the model’s activations,
weights, and biases to float-32 data types. We repeat the
above steps also using a conversion to uint-8 integer repre-
sentation for the weights using the dynamic range quantiza-
tion approach [11]. In TensorFlow full-integer quantization
is also supported, converting all the model parameters, in-
cluding the activations and input and output tensors, to 8-bit
integers. Unfortunately, this function is not currently sup-

TABLE I
EFFECT OF INCREASING THE NUMBER OF STACKED LSTM LAYERS.

LSTM
layers

Training
accuracy

Validation
accuracy

Training
time / s

No. of
parameters

1 86.4% 83.6% 117 2038
2 95.1% 91.9% 227 4150
3 95.4% 94.0% 403 6262
4 94.5% 91.4% 549 8374

TABLE II
EFFECT OF INCREASING THE NUMBER OF LSTM UNITS PER LAYER.

Units Training
accuracy

Validation
accuracy

Training
time / s

No. of
parameters

8 89.0% 89.9% 201 1366
16 95.1% 90.8% 227 4150
32 96.1% 93.4% 328 14,326
64 95.5% 93.5% 501 53,110
128 96.2% 90.1% 1105 203,406

ported by TensorFlow Lite for LSTM models. Nevertheless,
the weight-only quantized model generates a reduced model
size that is capable of performing inference on a smartphone.

The code for this work is available in GitHub at [13].

III. RESULTS

A. Offline prototype network

Table I shows the effect of increasing the number of
stacked LSTM layers on network performance, and the
number of parameters present within the network. Increasing
the number of layers beyond two gives limited performance
improvements, but gives increased numbers of parameters to
be quantized which will impact the memory requirements.
It is for this reason that the two layer prototype was chosen
for conversion to TensorFlow Lite.

Table II shows the effect of increasing the number of units
in each LSTM layer, for the two layer prototype. Increasing
the number of units increases the model’s accuracy as more
temporal features can be extracted per layer, as there are
more gating units used to extract discriminative features
from the input sequences. However the number of trainable
parameters also increases substantially. 32 units are chosen
for further use as increasing beyond this number does not
lead to a large increase in accuracy, and indeed validation
accuracy decreases beyond 64 units due to over-learning with
too many free parameters present.

For the final model configuration (Fig. 1) the performance
metrics for each class are shown in Table III. These reveal an
even distribution of accurate classification for each activity.
The model is capable of detecting the temporal differences
between Walking, Walking upstairs, and Walking Downstairs,
with overall accuracies of over 98% for each. The Lying
action was the most distinguishable activity. In-line with our
previous work [7], the model is weakest at differentiating
between the Standing and Sitting actions, as these activities
are both static and do not have many temporal differences
between them. The overall accuracy of the model is 92.8%

7030

TABLE III
PERFORMANCE OF THE FINAL PROTOTYPE LSTM.

Activity Accuracy Recall Precision F1 score

Walking 99.1% 95.0% 99.4% 97.1%
Walking upstairs 99.0% 94.3% 99.1% 96.6%

Walking downstairs 98.7% 100% 91.5% 95.6%
Sitting 94.4% 83.7% 82.7% 83.2%

Standing 95.5% 85.2% 89.2% 87.1%
Lying 99.2% 100% 95.7% 97.8%

Overall 92.8% 93.0% 92.9% 92.9%

TABLE IV
PERFORMANCE COMPARISON TO PREVIOUS HAR ALGORITHMS.

Model Dataset Accuracy

CNN [14] UCI-HAR 95.2%
CNN [5] UCI-HAR 94.8%
CNN [6] UCI-HAR 92.7%

LSTM [6] UCI-HAR 89.0%
SVM [6] UCI-HAR 90.5%

LSTM (this work) UCI-HAR 92.8%

and mean F1-score 92.9%. This is compared to the state-
of-the-art for on-phone HAR machine learning in Table IV.

B. TensorFlow Lite network

The performance of the TensorFlow Lite network is shown
in Table V. The float-32 model achieves an overall accu-
racy of 92.7%. This is only slightly reduced from the full
prototype model due to the fused operations. The output
probabilities from the HAR Android app match the output
probabilities from the Python interpreter implementation of
the TensorFlow Lite model, so there is no performance loss
from running the TensorFlow Lite model in Android rather
than on a PC.

Table V also compares the TensorFlow Lite models with
our previous work for HAR inference on a smartphone. The
new models achieve comparable accuracies, but with a much
smaller memory footprint. The size of the float-32 Tensor-
Flow Lite model is 63 KB, which is a 30x reduction from
the full prototype model. The uint-8 version requires only
27 KB with no further reduction in classification accuracy.
The weight-only optimization was thus capable of achieving
a 2.3x memory reduction. These memory footprints compare
to 1.9 MB for our prototype network, and 4.1 MB for

TABLE V
QUANTIZED MODEL PERFORMANCE.

Model Accuracy Memory
footprint

Power
consumption

Offline prototype 92.8% 1.9 MB –
Float-32 model 92.7% 63 KB Light
Uint-8 model 92.7% 27 KB Light

CNN (Float-32) [8] 96.4% 16 MB 40 mW
CNN (Uint-8) [8] 93.5% 2.1 MB –

LSTM (Float-32) [7] 92.2% 17.4 MB –
LSTM (Uint-8) [7] 93.5% 4.1 MB –

our LSTM network in 2019 [8]. Although the focus of the
current work is for on-phone implementations, the memory
requirements are now within the range where microcontroller
implementations (which typically have a few hundred KB of
memory) are now possible to explore in future work.

IV. CONCLUSIONS

This work has presented an optimized on-phone imple-
mentation of deep machine learning for human activity
recognition for use in rehabilitation and similar applications.
The memory footprint has been reduced by >30x, for a
0.1% reduction in classification accuracy. Weight quantiza-
tion allowed a further 2.3x reduction with no impact on
the accuracy. This lays the groundwork for further real-time
machine learning implementations on-phones and embedded
in wearable devices in future work.

REFERENCES

[1] O. D. Lara and M. A. Labrador, “A survey on human activity
recognition using wearable sensors,” IEEE Commun. Surv.
Tutor., vol. 15, no. 3, pp. 1192–1209, 2013.

[2] J. Wang, Y. Chen, S. Hao, et al., “Deep learning for sensor-
based activity recognition: A survey,” Pattern Recognit.
Lett., vol. 119, no. 1, pp. 3–11, 2019.

[3] W. Shi, J. Cao, Q. Zhang, et al., “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5,
pp. 637–646, 2016.

[4] C. Beach, E. Balaban, and A. J. Casson, “Edge algorithms
for wearables: An overview of a truly multi-disciplinary
problem,” in Wearable Sensors, E. Sazonov, Ed., Second
Edition, Oxford: Academic Press, 2020, pp. 379–414.

[5] C. A. Ronao and S. B. Cho, “Human activity recognition
with smartphone sensors using deep learning neural net-
works,” Expert Syst. Appl., vol. 59, no. 1, pp. 235–244, 2016.

[6] S. Wan, L. Qi, X. Xu, et al., “Deep learning models for real-
time human activity recognition with smartphones,” Mob.
Netw. Appl., vol. 25, no. 2, pp. 743–755, 2020.

[7] T. Zebin, E. Balaban, K. B. Ozanyan, et al., “Implementation
of a batch normalized deep LSTM recurrent network on
a smartphone for human activity recognition,” in IEEE
BHI/BSN, Chicago, 2019.

[8] T. Zebin, P. J. Scully, N. Peek, et al., “Design and implemen-
tation of a convolutional neural network on an edge com-
puting smartphone for human activity recognition,” IEEE
Access, vol. 6, no. 1, pp. 133 509–133 520, 2019.

[9] TensorFlow. (2021). “Home page,” [Online]. Available:
https://www.tensorflow.org/.

[10] P. Agarwal and M. Alam, “A lightweight deep learning
model for human activity recognition on edge devices,”
Procedia Comput. Sci., vol. 167, no. 2019, pp. 2364–2373,
2020.

[11] TensorFlow Lite. (2021). “Usage guide,” [Online]. Avail-
able: https : / / www . tensorflow . org / lite /
guide.

[12] J. Luis and R. Ortiz. (2012). “UCI machine learning repos-
itory: Human activity recognition using smartphones data
set,” [Online]. Available: https : / / archive . ics .
uci . edu / ml / datasets / human + activity +
recognition+using+smartphones.

[13] LSTM-HAR. (2021). “Source code,” [Online]. Available:
https://github.com/CASSON-LAB/LSTM-HAR.

[14] W. Jiang and Z. Yin, “Human activity recognition using
wearable sensors by deep convolutional neural networks,”
in ACM Multimedia Conf., Brisbane, 2015.

7031

