
       

 

 

    Abstract—Eye dynamics, a typical expression of brain 

activities, is an emerging modality for emerging and promising 

smart health applications. Electrooculogram (EOG) – a natural 

bio-electric signal generated during eye movements, if decoded, 

is of great potential to reveal the user’s mind and enable 

voice-free communication for patients with amyotrophic lateral 

sclerosis (ALS). ALS patients usually lose physical movement 

abilities including speech and handwriting but fortunately can 

move their eyes. In this study, we propose a novel deep transfer 

learning-empowered system, called “eyeSay”, which leverages 

both deep learning and transfer learning for intelligent eye 

EOG-to-speech translation. More specifically, we have designed 

a multi-stage convolutional neural network (CNN) to analyze 

the eye-written words, named as CNN-word. Moreover, to 

reveal fundamental patterns of eye movements, we build a 

transferable feature extractor, CNN-stroke, upon eye strokes 

that are building components of an eye word. Then, we transfer 

the CNN-stroke model to the eye word learning task in an 

innovative way, that is, use CNN-stroke as an additional branch 

of CNN-word to generate a stroke probability map. The 

achieved boostCNN-word model, enhanced by the transferable 

feature extractor, has greatly improved the eye word decoding 

performance. This novel study will directly contribute to 

voice-free communications for ALS patients, and greatly 

advance the ubiquitous eye EOG-based smart health area. 

 
Index Terms—Smart Health, Deep Learning, Transfer 

Learning, Electrooculography, Amyotrophic Lateral Sclerosis.  

 

I. INTRODUCTION 

Empowered by advancements in electronics, signal 

processing and artificial intelligence (AI), smart health is 

igniting next-generation healthcare platforms that are 

intelligent, light weighted, easily accessible, user friendly, 

cost effective and fully extensible [1-3]. Smart health 

wearable, as a booting paradigm, brings us many 

irreplaceable advantages. In this study, we take a special 

interest in Electrooculogram (EOG)-based eye decoding 

applications [4]. EOG is an electrical potential difference 

between the cornea and the ocular fundus. The around-eye 

electric field changes during different eyeballs’ movements, 
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and if we can decode these EOG dynamics, we will be able to 

“hear the sound” of the users if they intentionally speak, 

without needing any other traditional communication means 

Specifically, we investigate how to decode eye EOG 

signals in the context of voice-free communication for 

amyotrophic lateral sclerosis (ALS) patients [5, 6]. Compared 

with video-based methods, eye EOG decoding is insensitive 

to environmental light changes and has better privacy 

protection. Besides that, the proposed approach can be 

generalized to other smart health applications like 

human-computer interaction, attention tracking, wheelchair 

control, cognitive load measurement, driver distraction and 

drowsiness detection, virtual reality, and augmented reality 

[7-9] (Fig. 1).  

ALS is an idiopathic, fatal disease that makes the patients 

suffer from the degeneration of motor neurons and loss of 

physical capability. Worldwide, about 450,000 people have 

ALS and every 90 minutes, there will be one diagnosed as 

ALS patient [10]. Lots of severely-ill patients become 

incapacitated and lose the ability to move, grasp, and speak. 

Research shows ALS patients can still hear, smell as normal 

and their senses of taste and sight remain unaffected. 

Especially, the fact that ALS would not hurt muscle of the 

eyes makes the eye controlling system extremely helpful to 

those people. Therefore, researchers have investigated 

approaches to allow the ALS patients to communicate with 

eye movements, yielding the so-called eye-writing systems.   
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Fig. 1 A big picture of how eye dynamics decoding can advance 

many smart health and human-X interactions. In this study, we take 

special interest in leveraging AI to analyze, learn, and decode the 

eye dynamics for voice-free communications for ALS patients. This 

study will also greatly advance various applications illustrated here.  
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Previous studies on eye-writing can be categorized into 

two groups: keyboard typing and handwritten-style writing. 

In the former one, Kate et al. developed a screen-based 

eye-typing system with a virtual keyboard [11], and Ward et 

al. developed a system called “Dasher’ [12]. To deal with the 

limitation of the input speed of these methods, the second 

category, i.e., handwritten-style writing has gained more and 

more attention, which is moving eye along the trajectory of 

the word like writing a word using the hand. Though early 

works in this category usually require “dwell time” to 

separate multiple characters in a word that induce significant 

time waste [13, 14], most recent works now use methods like 

Hidden Markov Model to continuously analyze EOG for 

handwritten-style writing. However, the detection 

performance is still a big challenge, mainly because of the 

high diversity of the signal characteristics. For instance, even 

when a patient performs the same eye-writing operation, the 

eye trajectories are usually inconsistent. This is natural since 

the human body is a complex dynamic system and the 

eyeballs have a high freedom in movements. Another fact that 

worsens the situation is that a word usually owns multiple 

characters, and a character usually owns more than one 

strokes, which are the most fundamental elements of eye 

writing like moving leftward or upward. And the 

stroke-character-word conditions can be highly diverse. For 

example, the duration of each stroke/character, the 

character-to-character transition time, and the total time of the 

word, may all change from time to time. Therefore, we 

propose deep learning algorithms to tackle this dilemma [13, 

14].  

In this study, we propose a novel deep transfer learning 

framework that can robustly decode EOG eye-writing 

dynamics, thereby enabling voice-free communication for 

ALS patients. We have not only designed a deep 

convolutional neural network (CNN) for eye word learning, 

but also designed a transferable feature extractor that can 

learn more fundamental characteristics at the eye stroke level. 

The innovative framework, through combining deep learning 

and transfer learning, can effectively reveal the eye 

stroke-character-word structures under high intra-word 

variabilities. More specifically, our major contributions 

include: 

 

1. Design a deep CNN model, called CNN-word, for 

automatic EOG-based word decoding, which can 

continuously recognize the patterns within an EOG 

word by learning stroke-to-character-to-word 

constructions.   

2. Propose a transferable deep feature extractor, called 

CNN-stroke, which is pre-trained on basic EOG strokes 

and then concatenated with the CNN-word model, 

aiming to provide a stroke probability map for the given 

eye word. The achieved framework is named as 

boostCNN-word.  

3. Evaluate and validate the proposed novel framework and 

demonstrate that boostCNN-word can provide an 

eye-writing detection accuracy much superior to 

previous studies, by maximizing pattern mining 

efficiency from scarce learning inputs using deep 

transfer learning. The framework, evaluated on one 

language now, can be generalized to other languages 

too. 

II. METHODS 

A. System Overview 

The proposed novel deep transfer learning framework (Fig. 

2) has two parallel branches for pattern mining, followed by a 

fully connected neural network for eye word prediction. One 

branch (CNN-word) extracts the spatial patterns directly from 

eye EOG word signals. The other branch (CNN-stroke) is a 

pre-trained transferable feature extractor, which is trained on 

fundamental EOG stroke data and then transferred to EOG 

word decoding, thereby generating stroke probability maps 

for sliced stroke images. After fusing above learned patterns 

and feeding them to a fully connect neural network (FNN), 

the achieved boostCNN-word model is expected to greatly 

boost the eye word decoding performance. Major components 

of this system are detailed below. 

B. EOG-word Deep Translator 

Fig. 3 illustrates the EOG-word deep translator, which is 

composed of the CNN-word model for spatial EOG pattern 

learning and the FNN model for EOG word prediction [15]. 

These two models are also used in boostCNN-word model, 

where they are both trainable to order to coordinate with the 

non-trainable CNN-stroke model. CNN-word model includes 
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Fig. 2 Proposed deep transfer learning-empowered eye EOG 

decoding system, which owns two parallel feature abstraction 

branches: a CNN-word branch for word feature extraction, and a 

CNN-stroke branch for stroke-level probability map generation. 

Finally, a fully connected neural network fuses the output of these 

two branches and generates the final word prediction. Note: 

horizontal channel corresponds to bio-potential between location A 

& B in Fig. 1, and vertical channel corresponds to C & D. 
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multiple stages of convolutional layers (COV) and max 

pooling layers (MP), for spatial motif learning and dimension 

reduction, respectively [16]. The 2D-EOG image (horizontal 

channel and version channel) is fed into the deep translator in 

Fig. 3 for spatial pattern mining and eye word prediction. 

While we expect it can effectively predict the eye words, but 

further effort of leveraging transfer learning onto current 

classifier will be beneficial considering that the EOG data is 

scarce and the data collection effort on the user needs to be 

minimized. 

C. EOG-stroke Transferable Deep Feature Extractor 

A word-level eye-writing movement can be sliced into 

multiple continuous stroke-level eye-writing movements. 

Actually, a general stroke-to-character-to-word model can be 

applied to many languages. As the basic unit of constructing 

every single word, the number of strokes is dramatically less 

than the number of words. Therefore, one motivation is to 

leverage a small dataset of strokes to learn basic EOG 

patterns, and transfer what have been learned to more 

complex word recognition tasks as shown in Fig. 2. 

Therefore, we propose to learn a transferable EOG feature 

extractor as shown in Fig. 4. The proposed CNN-stroke 

model includes multiple convolutional layers, max pooling 

operators, and fully connected layers, to learn the 

fundamental dynamics within the eye EOG strokes. Then 

output for a stroke slice is a probability vector with a 

dimension of 1-by-13, where 13 corresponds to 12 different 

strokes plus 1 null stroke (specific dataset information will be 

given in the results section).  

This CNN-stroke model, after pre-trained on the small 

stroke dataset that will be detailed later, will have the 

capability to reveal stroke-level patterns of complex eye EOG 

signals. It will then be transferred to build the 

boostCNN-word model as given in Fig. 2, where the 

CNN-stroke model is a non-trainable feature extractor in 

parallel with the CNN-word branch.    

D. Deep Transfer Learning-empowered eyeSpeak System 

The transferrable CNN-stroke model in Fig. 2 helps 

minimize the training effort of the eye word learning model 

through revealing the fundamental patterns evolved in the eye 

writing movements. As detailed in the results section, for the 

Japanese language, if collecting 12 fundamental strokes for 

10 times, that will be 120 recordings. But if collecting 150 

words for 5 time, there will be 750 recordings, not mention if 

we consider like thousands of words. Evidently, collecting 

and learning fundamental eye strokes will effectively lower 

the data collection, model training, and user efforts.   

The CNN-stroke model can analyze each eye word slice 

(segmented by a sliding window method) and give a 

probability vector corresponding to different eye stroke types. 

When combining vectors from all slices of an eye word, a 

probility map (as visualzied in Fig. 6 in the results section) 

will be generated and treated as a new data representation 

Fig. 4 Proposed CNN-based for EOG stroke decoding, 

CNN-stroke, which will later be concatenated with CNN-word as 

a pre-trained transferable feature extractor. Notes: COV – 

convolution. 

 

 
Fig. 3 CNN-based EOG translator for EOG word decoding: 

CNN-word for feature learning and FNN (fully connected neural 

network) for word prediction. Notes: COV – convolution. 

 

(a )  S trok e

(b ) W o rd

 
Fig. 5 For the same stroke (a) or word (b), the intra-subject inter-trial 

comparison, and inter-subject comparison both indicate high 

variabilities, which pose challenges to eye EOG decoding and 

necessitates advanced pattern learning algorithms. Notes on axis: 

horizontal is time and vertical is voltage. 
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branch, thereby achieving the boostCNN-word model and 

boosting the eye word detection performance.  

III. RESULTS 

A. Experimental Setup and Data Used 

As mentioned above, to boost the eye word recognition 

performance, we propose to leverage the most fundamental 

eye movements – eye strokes to train a transferable feature 

extractor. Therefore, we have used a database that includes an 

EOG word dataset, and a small EOG stroke dataset. It is a 

Japanese eye writing database [17], recorded from six 

participants, each of which eye-wrote 150 words for 5 trials, 

and 12 strokes for 10 trials.  

Here, for each participant, 120 stroke recording are used 

for CNN-stroke model training and testing, and 750 words for 

CNN-word and boostCNN-word training and testing. The 

leave-one-trial-out strategy is used to split the training and 

testing data for thorough evaluation purpose. Considering the 

randomness induced by deep learning training, we have 

repeated the evaluation by three times and reported the 

average performance.   

B. Diversity of EOG Strokes and EOG Words 

EOG is highly different among users and even among 

different trials of the same user. As shown in Fig. 5a, two 

trials of a same type of eye-writing task performed by two 

subjects are given, which indicates that the two-channel 

EOG-stroke signals are highly different even for the same 

subject. The inter-subject difference is much more obvious. 

 In Fig. 5b, the subjects have written a word that includes 

multiple strokes. We can find that firstly, two trials of an eye 

movement from the same subject are also very different. The 

inter-subject EOG word variability is much higher. The 

durations of the EOG words are different due to the different 

speed of eye movement of different users. Besides, the 

morphologies are also user-specific, meaning that the 

biological processes behind the eye dynamics also differ from 

each other. These all necessities advanced detection 

algorithms. 

C. Transferable Feature Extractor Learning 

 To illustrate how the transferable feature extractor can 

facilitate the eye word decoding process, we have visualized 

the probability maps generated by the CNN-stroke model 

when feeding the sliced EOG word into it. As shown in Fig. 6, 

for a given slice which is selected from the eye EOG word 

using a sliding window method, a vector with a dimension of 

13 are generated (12 stroke classes plus 1 null class). For all 

the slices of an EOG word, the corresponding probability 

vectors together make a probability map, which indicates the 

estimation of occurrence of each stroke in each moment 

(slice). 

This probability map generation process is treated as 

another pattern abstraction branch in the boostCNN-word 

model. Together with CNN-word, the new framework can, 

not only directly learn eye EOG word patterns, but also reveal 

fundamental stroke patterns. Therefore, these parallel 

learning strategy can boost the eye writing decoding 

performance.  

D. boostCNN-word vs. CNN-word 

In Fig. 7, the boostCNN-word model is compared with the 

CNN-word model in terms of eye EOG word detection 

accuracy, precision and recall. Participant-wise comparison is 

given subfigures (a), (b) and (c), where the maximum 

improvements of accuracy, precision, and recall are 3.43%, 

4.49% and 3.42%, respectively. This clearly indicates the 

transferable CNN-stroke feature extractor has boosted the eye 

EOG word recognition performance. 

 Another finding is that, for participants that have low 

CNN-word performance, the transfer learning approach can 

bring more performance improvement. The reason lies in the 

fact that the additional fundamental patterns extracted by 

CNN-stroke can greatly enrich the data representation, 

thereby allowing boostCNN-word to more robustly translate 

eye EOG words.  

 
Fig. 6 The probability map is generated, where each slice 

corresponds to a signal segment in the eye EOG word and results 

in a 13-dimension probability vector (12 stroke classes plus 1 null 

class). This probability map is treated as an additional feature 

representation (Fig. 2), which, together with the features extracted 

by CNN-word, are fused by FNN to yield robust eye word 

predictions.   

 
Fig. 7 The boostCNN-word model outperforms the CNN-word model in terms of eye EOG word detection accuracy, precision and recall. 

Participant-wise comparison is given subfigures (a), (b) and (c), where the maximum improvement of accuracy, precision, and recall are 3.43%, 4.49% 

and 3.42%, respectively. This clearly indicates the transferable CNN-stroke feature extractor has boosted the eye EOG word recognition performance.  
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D. Further Comparison 

In addition to further summarize the performance of 

different deep models, we have also compared our study with 

previously reported Hidden Markov Model (HMM) [17] and 

Dynamic Time Warping (DTW) methods [17], given in Table 

I. The previous methods leveraged basic EOG features and 

expanded feature set, and reported the eye stroke recognition 

precision and recall up to 87.2% and 85.9%. Our CNN-stroke 

model improves them to be 89.88% and 92.64%, 

respectively.  

Further, from Fig. 7, we have summarized the average 

performance across all the participants for word recognition, 

and the accuracy, precision, and recall are 92.04%, 88.51%, 

and 91.98%, respectively.  The maximum improvements of 

criterion (3.43%, 4.49% and 3.42%) are also given in Table I. 

Overall, the proposed boostCNN-word deep learning 

framework, enhanced by transfer learning, can robustly 

recognize eye EOG words and will greatly advance the 

voice-free communication practices for ALS patients. 

 
Table I: Performance summary of proposed deep models, and further 

comparison with previously reported HMM & DTW methods. 

Accuracy Precision Recall Accuracy Precision Recall

Max boosting 3.43 4.49 3.42

boostCNN-word 92.04 88.51 91.98

CNN-word 90.97 87.08 90.91

CNN-stroke 92.64 89.98 92.64

HMM (basic features) [a] 85.00 84.20

DTW (basic features) [a] 78.20 76.80

HMM (expanded features) [a] 87.20 85.90

DTW (expanded features) [a] 78.10 77.10

Word Recognition (%)Stroke Recognition (%)
Approaches

 
Note: [a] – reference [17]. 

E. Future Work 

We plan to further investigate the feature extractor for 

further performance enhancement, including analyzing the 

relationship between the incorrect word prediction and the 

probability vectors generated by the transferable feature 

extractor. We also plan to extend the study to other languages. 

These future works will further advance our understanding 

the potential of deep and transfer learning on intelligent EOG 

decoding. 

And we are also interested in implementing the system on 

the edge devices like the smart phone for real-time eye 

decoding. 

IV. CONCLUSION 

In this study, we have proposed a deep transfer learning 

framework for intelligent EOG-based eye-writing 

recognition, which is crucial for the voice-free 

communicating system designed for ALS patients. It can also 

greatly advance other EOG-based smart health applications 

such as human-computer interaction, attention tracking, 

wheelchair control, cognitive load measurement, driver 

distraction and drowsiness detection, virtual reality, and 

augmented reality. 

The proposed framework includes two parallel feature 

abstraction branches: a CNN-word branch for word-level 

feature extraction, and a CNN-stroke branch for stroke-level 

probability map generation. The CNN-stroke feature 

extractor is transferred from another learning task, i.e., eye 

stroke recognition, which can reveal fundamental patterns of 

eye movements at the stroke-level. The achieved 

boostCNN-word framework has greatly enhanced the eye 

word recognition performance compared with the CNN-word 

model. This novel study will directly contribute to voice-free 

communications for ALS patients, and greatly advance the 

ubiquitous eye EOG-based smart health area.  

 

REFERENCES 

 
[1] M. M. Baig and H. Gholamhosseini, "Smart health monitoring 

systems: an overview of design and modeling," Journal of 

medical systems, vol. 37, no. 2, pp. 1-14, 2013. 

[2] M. I. Pramanik, R. Y. Lau, H. Demirkan, and M. A. K. J. E. S. w. 

A. Azad, "Smart health: Big data enabled health paradigm within 

smart cities," vol. 87, pp. 370-383, 2017. 

[3] A. Solanas et al., "Smart health: a context-aware health paradigm 

within smart cities," IEEE Communications Magazine, vol. 52, 

no. 8, pp. 74-81, 2014. 

[4] M. Merino, O. Rivera, I. Gómez, A. Molina, and E. Dorronzoro, 

"A method of EOG signal processing to detect the direction of eye 

movements," in 2010 First International Conference on Sensor 

Device Technologies and Applications, 2010, pp. 100-105: IEEE. 

[5] R. Del Bo et al., "Absence of angiogenic genes modification in 

Italian ALS patients," Neurobiology of aging, vol. 29, no. 2, pp. 

314-316, 2008. 

[6] S. Garbuzova-Davis et al., "Impaired blood–brain/spinal cord 

barrier in ALS patients," Brain research, vol. 1469, pp. 114-128, 

2012. 

[7] B. K. Chakraborty, D. Sarma, M. K. Bhuyan, and K. F. 

MacDorman, "Review of constraints on vision-based gesture 

recognition for human–computer interaction," IET Computer 

Vision, vol. 12, no. 1, pp. 3-15, 2017. 

[8] L. Oliveira, J. S. Cardoso, A. Lourenço, and C. Ahlström, "Driver 

drowsiness detection: a comparison between intrusive and 

non-intrusive signal acquisition methods," in 2018 7th European 

Workshop on Visual Information Processing (EUVIP), 2018, pp. 

1-6: IEEE. 

[9] J. Xiao, J. Qu, and Y. Li, "An Electrooculogram-based interaction 

method and its music-on-demand application in a virtual reality 

environment," IEEE Access, vol. 7, pp. 22059-22070, 2019. 

[10] V. Neuro. (2020). ALS Incidence. Available: 

https://alstreatment.com/amyotrophic-lateral-sclerosis-incidence/ 

[11] J. Ten Kate, E. Frietman, F. Stoel, and W. Willems, 

"Eye-controlled communication aids," Medical Progress through 

Technology, vol. 8, no. 1, pp. 1-21, 1980. 

[12] D. J. Ward and D. J. MacKay, "Fast hands-free writing by gaze 

direction," Nature, vol. 418, no. 6900, pp. 838-838, 2002. 

[13] J. Tsai, C. Lee, C. Wu, J. Wu, and K. Kao, "A feasibility study of 

an eye-writing system based on electro-oculography," Journal of 

Medical and Biological Engineering, vol. 28, no. 1, p. 39, 2008. 

[14] K.-R. Lee, W.-D. Chang, S. Kim, and C.-H. Im, "Real-time 

“eye-writing” recognition using electrooculogram," IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, 

vol. 25, no. 1, pp. 37-48, 2016. 

[15] J. Zou and Q. Zhang, "eyeSay: Eye Electrooculography Decoding 

with Deep Learning," in The 39th International Conference on 

Consumer Electronics (ICCE 2021), 2020. 

[16] Q. Zhang, "Deep Learning of Biomechanical Dynamics in Mobile 

Daily Activity and Fall Risk Monitoring," in The 6th annual IEEE 

EMB Strategic Conference on Healthcare Innovations and 

Point-of-care Technologies (IEEE HI-POCT 2019), DC, USA, 

2019. 

[17] F. Fang and T. Shinozaki, "Electrooculography-based continuous 

eye-writing recognition system for efficient assistive 

communication systems," PloS one, vol. 13, no. 2, p. e0192684, 

2018. 
 

381


