


Abstract— There is growing evidence that seizures are 
accompanied by multi-system changes, not only in the brain 
but also in organs and systems under its control. Non-EEG 
measurements from these systems could be leveraged to 
improve seizure prediction, which is difficult but critical to the 
success of next-generation epilepsy therapies. Clinical 
electrophysiology studies during presurgical patient evaluations
routinely collect continuous EEG but also ECG data that span 
multiple days. Prior work has reported electrocardiographic 
changes but has primarily focused on ventricular activity and 
brief peri-ictal intervals. Using novel data-driven classification 
and separation of the ECG high-dimensional signal space, this 
study investigated seizure-related changes in both ventricular 
and atrial activity. Measures of complexity as well as heart rate
and R-R interval length were analyzed over time in continuous 
ECGs from 22 pediatric patients with pharmacoresistant 
seizures and no diagnosed cardiovascular anomalies. Fifteen 
patients (>68%) had significant changes in atrial or ventricular
activity (or both) in intervals containing seizures. Thus, for a 
substantial number of patients, cardiac markers may be 
specifically modulated by seizures and could be leveraged to 
improve and personalize seizure prediction.

Clinical Relevance— Electrocardiographic changes during 
seizure evolution in children with medically refractory epilepsy 
remain relatively unexplored. Using continuous single-lead 
ECG recordings (median = 93.3 h) from 22 pediatric patients 
with medically refractory epilepsy, seizure-related changes in 
atrial signal complexity and/or ventricular parameters 
(including heart rate and R-R interval length) were identified. 
These may represent novel non-EEG, markers of seizure 
evolution that could be used to ultimately improve next-
generation targeted therapies.

I. INTRODUCTION

Epilepsy affects more than 1% of the US population. 
About 30-40% of patients with the disorder do not respond to
medications and suffer from debilitating and sometimes life-
threatening seizures. Almost 200,000 children in the US have
medically refractory seizures and have a substantially higher 
risk of morbidity and mortality (4-5 times higher) than the 
general pediatric population [1]. Uncontrollable seizures can 
adversely affect development and may lead to physical and 
cognitive deficits across the lifespan. Children with 
pharmacoresistant seizures, who are not good candidates for 
epilepsy surgery, currently have very limited treatment 
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options. As promising next-generation therapies (including 
neurostimulation and targeted drug delivery) evolve, their 
options may increase. However, these novel therapies 
critically depend on early detection of seizure-related activity
in the brain for seizure prevention. 

The success of spatio-temporally targeted interventions in
epilepsy, a disorder that is characterized by aberrant 
electrodynamic changes in the brain that may occur hours 
prior to seizure onset, depends on the ability to detect these 
changes before they spread to large areas of the brain. When 
focal pathological neural activity is detected early, targeted 
neurostimulation may prevent seizure occurrence. However, 
seizure detection and prediction remain difficult problems [2-
5]. This is in part due to the heterogeneity of the disorder but 
also the limitations of many prediction algorithms that have 
been developed based on either short scalp EEGs that do not 
capture the variability of a functioning brain’s neural activity 
or invasive EEGs that are significantly less noisy than scalp 
signals and sample highly focal areas of the brain. In the last 
few years, additional physiological measurements have 
received increasing attention, including electrodermal 
activity, accelerometer data, electromyographic signals and 
cardiac activity measured by the ECG [6-9]. 

Although seizure biomarker discovery from non-EEG 
data is of significant interest, similar issues of sensitivity and 
specificity as with the EEG have limited the estimation of 
robust measures that can be used for seizure detection and 
prediction. This highlights the complexity of the disorder, 
heterogeneity of patient physiology, and potential need to 
integrate markers from different modalities. In addition, 
irrespective of modality, continuous signals that capture the 
entire range of variability of the measured system (e.g., 
neural, cardiovascular, neuromuscular) are critically needed 
in the evaluation of seizure biomarkers. 

In the last few years, there has been increased interest in 
the epileptic heart [10 (review), 11] and seizure-related 
electrocardiographic changes (e.g., bradycardia or 
tachycardia) [12-15]. Beyond changes in heart rate, 
morphological changes in the ECG have also been reported, 
but the majority of prior work has focused on the QRS+T 
wave complex and its features. In contrast, atrial activity 
remains relatively unexplored, with the exception of sudden 
unexpected death in epilepsy (SUDEP) [16]. Continuous 
cardiac recordings (1-2 ECG electrodes) are available in most
noninvasive and invasive neurophysiological studies that are 
part of a patient’s presurgical evaluation. These signals 
provide a unique opportunity to identify and systematically 
evaluate electrophysiological seizure markers in the presence 
of significant inter- and intra-ECG variability. If sensitive and
specific, these markers may then be used to improve seizure 
prediction, either individually or integrated with EEG and 
other measures. To date there are very limited prior 
investigators of the continuous ECG in epilepsy [17].
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This paper presents the estimation and initial evaluation 
for seizure specificity of ventricular and atrial measures 
identified in 22 pediatric epilepsy patients, using a data-
driven algorithm to separate atrial and ventricular signal 
contributions in single-channel continuous ECG. Existing 
algorithms based on Independent Component Analysis (ICA)
are not adequate for 1-2 lead ECG [18-19], while those based
on signal templates may be model-based [20-21]. Continuous
ECGs spanning multiple days are significantly contaminated 
by artifacts (respiration- and/or movement-related) and vary 
dynamically as a function of physiological state (sleep, 
arousal, wakefulness, physical activity). All sources of signal 
variance need to be accounted for and separation should 
ideally be data-driven. The developed method uses 
classification to estimate a template of the QRS+T waveform 
adaptively over time, which is matched to true complexes 
(confirmed via signal similarity) and subtracted from the 
ECG to obtain the atrial signals. 

Following signal separation, waveform distances and 
heart rate from ventricular signals and measures of 
complexity (entropy and fractal dimension) from atrial 
signals were estimated. Temporal parameter changes were 
identified over the duration of the recordings using 
changepoint detection. Individual measures were compared 
in intervals with and without seizures to assess specificity to 
seizure evolution.

II.MATERIALS AND METHODS

All analyses were conducted in the Harvard Medical 
School High-Performance Cluster using the software Matlab 
(release R2019a, Mathworks, Inc). Data were collected at the 
Comprehensive Epilepsy Center at Boston Children’s 
Hospital using a clinical EEG/ECG system (Natus, Inc).

A. Patient Characteristics

All analyzed patients had been diagnosed with medically 
refractory focal epilepsy and were undergoing continuous 
noninvasive EEG/ECG monitoring as part of their presurgical
evaluation. A total of 22 children (12 boys and 10 girls, 
median age = 10.2 years, interquartile range (IQR) = 6.2 
years) were studied. Their number of seizures varied from 2 
to 48 (median = 7, IQR = 8). Recordings spanned 17.7 - 
227.4 h (median = 93.3 h, IQR = 54.1 h). All seizures were 
focal, with a distribution of foci that is representative of the 
pediatric epilepsy patient population.

B. ECG Signal Characteristics and Preprocessing

ECGs were recorded continuously using two leads (left 
and right) and were sampled at 1024 samples/s. In several 
patients, only one of the two leads recorded data of adequate 
quality for analysis. A 3rd order elliptical stopband filter (1 
Hz bandwidth, 20 dB attenuation in the stopband, 0.5 dB 
ripple in the passband) was used to suppress the 60 Hz 
powerline noise and its harmonics. Signals were filtered in 
both directions to eliminate potential phase distortions 
associated with the filter’s non-zero phase. Respiration may 
affect the RR interval at frequencies <1 Hz [22]. Given this 
and other potential low-frequency artifacts in ECG, signals 
were also highpass filtered (using a cutoff of 2 Hz) using the 
same type of IIR (but highpass) filter.

C. Algorithm for Ventricular and Atrial Signal Separation

The organization of the developed ECG separation 
algorithm is schematically summarized in Figure 1.

Figure 1. Analysis flow for ventricular and atrial signal separation via 
classification, pattern matching and estimation of respective parameters.

R-peak detection: A 1-min analysis window was used. 
Extreme outlying positive and negative amplitudes were 
estimated from normalized, zero-mean signals as 
thresholds for peak detection. Waveforms were identified
from unique peaks by segmenting signals 0.05 s to the 
left to 0.39 s to the right of each peak (typical length of 
the QRS+T complex).

Classification: The gap statistic [23] was first 
estimated from the identified waveforms, to identify an 
upper bound for the number of k-means clusters. 
Optimizing the classification algorithm was beyond the 
scope of this study. However, k-means was selected 
because it is a simple and unsupervised method. Given 
potentially significant heterogeneity of ECGs from 
epilepsy patients who are having their AEDs gradually 
withdrawn, supervised classification that relies on 
training data may have a number of challenges related to 
the choice of these data. The robustness of the 
classification was increased through additional steps. A 
lower bound was imposed on the number of signals in a 
cluster, assuming that in segments containing primarily 
true QRS+T wave complexes the number of waveforms 
should approximately correspond to an age-appropriate 
heart rate. Also, if an optimal number of clusters could 
not be estimated, the segment was assumed to contain 
noise and/or artifacts.

Template estimation: Assuming that segments with 
good quality data contained primarily QRS+T wave 
complexes, the cluster with the highest membership (and 
in most cases the lowest inter-waveform variance) was 
used to estimate the template. In cases where the cluster 
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with the smallest variance did not have the highest 
membership, the two clusters were combined as long as 
the former met a lower bound for the number of 
waveforms. The QRST template was then estimated 
from this cluster as the median of its signals. In addition, 
the median cross-correlation between these signals was 
also estimated as a threshold of similarity to be used in 
matching the template to the data.

Separation of atrial and ventricular activity and 
parameter estimation: The normalized QRS+T template 
was adaptively matched to each peak and subtracted 
from the ECG signal to obtain the atrial and ventricular 
components. Following this separation, multiple 
parameters were estimated from the two signals, 
including approximate entropy and Higuchi Fractal 
Dimension (measures of signal complexity and regularity
[24-25]) from the atrial signal, and R-R intervals, heart 
rate, QRS length, P-R, R-Q, R-T, S-T wave intervals 
from the ventricular signal. Ventricular measures were 
estimated following the elimination of artifactual peaks 
in the ECG based on their dissimilarity (assessed via 
cross-correlation) with the estimated QRS+T waveform 
template. Although not an exhaustive set, anomalies in 
ventricular activity have been previously reported in 
patients with epilepsy [10]. In contrast, the type of atrial 
measures analyzed in this study have not been previously
reported in this population.

Changepoint detection and comparison of seizure and 
non-seizure intervals: Significant fluctuations of each 
estimated measure’s temporal pattern across the entire 
duration of the recordings were estimated via 
changepoint detection [26], with the mean as the relevant
statistic. The upper bound for the number of 
changepoints was varied in the estimation from 20 to 60. 
The significance of differences between intervals with vs
without seizures was assessed via nonparametric 
statistical comparisons.

III. RESULTS

The present investigation focused on 4 measures 
estimated from ECGs in 22 analyzed patients: approximate 
entropy, fractal dimension, R-R interval length and heart rate 
(its reciprocal). Only a few patients had two ECG leads with 
data of adequate quality for analysis. Thus, results are based 
on signals from the sole or best of the two leads. Fifteen 
patients (68.2%) had significant changes, in one or more 
measures, in intervals containing seizures, irrespective of the 
upper bound of changepoints used in the detection. Not all 
measures varied significantly between intervals containing 
seizures and those without. Table 1 summarizes the median 
variability of all 4 measures in intervals containing seizures 
compared to those that did not, for patients with statistically 
significant seizure-specific changes. Out of the remaining 7 
patients, 2 had marginal differences between intervals with vs
without seizures (0.5<p<0.1) and 5 had no significant 
changes in any of the 4 measures. There was no statistical 
difference in median number of seizures between those with 
vs without cardiac changes (median = 7 seizures for both).

TABLE I. MEDIAN APPROXIMATE ENTROPY, FRACTAL DIMENSION, 
HEART RATE, R-R LENGTH IN INTERVALS WITH VS WITHOUT SEIZURES FOR 
PATIENTS WITH SIGNIFICANT DIFFERENCES BETWEEN THE TWO.

Pt #

Approx.
Entropy

Fractal
Dim.

Heart Rate RR Interval

SZ
Non-
SZ

SZ
Non-
SZ

SZ
Non-
SZ

SZ
Non-
SZ

1
0.7 0.9 1.5 1.5 77.2 89.7 0.8 0.7

p = 0.02

2
1.2 1.1 1.5 1.5 72.3 63.2 0.8 0.9

p = 0.02

3
0.8 1.0 1.5 1.5 122.6 109.4 0.5 0.5

p = 0.02

4
1.3 0.8 1.5 1.5 104.8 104.7 0.6 0.6

p < 0.01

5
0.7 0.7 1.3 1.3 87.3 80.5 0.7 0.7

p = 0.01

7
1.2 1.0 1.6 1.5 91.9 78.7 0.7 0.8

p = 0.03 p < 0.01

8
0.8 1.0 1.5 1.5 93.3 61.9 0.6 1.0

p < 0.01

10
0.6 0.8 1.3 1.4 94.9 90.8 0.6 0.7

p = 0.01

13
0.8 0.6 1.5 1.3 115.7 111.0 0.5 0.5

p = 0.01

15
0.6 0.8 1.3 1.3 129.8 110.8 0.5 0.5

p = 0.01

16
1.0 0.9 1.6 1.5 109.8 69.6 0.5 0.9

p = 0.01 p < 0.01

17
1.0 0.9 1.5 1.3 98.1 86.3 0.6 0.7

p = 0.01

20
1.2 1.0 1.6 1.5 105.4 110.9 0.6 0.5

p < 0.01

21
0.7 1.0 1.4 1.4 85.4 71.5 0.7 0.8

p = 0.01

22
0.7 0.9 1.3 1.3 95.6 86.9 0.6 0.7

p = 0.03 p = 0.04

Nine patients had significant seizure-specific changes in 
atrial complexity (entropy or fractal dimension) and 9 had 
significant changes in heart rate/R-R interval (3 had both 
atrial and ventricular changes). In 7 of 9 patients, intervals 
(between changepoints) containing seizures had higher atrial
complexity (lower regularity). Eight of 9 patients had 
statistically higher heart rate in intervals containing seizures 
(independently of sleep vs wakefulness) compared to non-
seizure intervals (one had lower heart rate). Figures 2 and 3 
show temporal patterns of cardiac measures in 2 patients, 
with significant seizure-related increase in heart rate and 
atrial fractal dimension, respectively. Seizure times and 
means between changepoints are superimposed.
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Figure 2. Temporal patterns (over ~43 h) of atrial and ventricular 
measures and 7 superimposed seizures (red lines) for a patient with 
significant seizure-related R-R changes. Intervals between changepoints are 
also shown (black lines).

Figure 3. Temporal patterns of atrial complexity and spectral content for a 
patient with 6 seizures and statistically higher, seizure-related, atrial fractal 
dimension over ~18 h.

IV. CONCLUSION

A data-driven classification-based approach has been 
developed to facilitate the investigation of seizure-related 
changes separately in atrial and ventricular activity during 
continuous ECG monitoring of children with intractable 
epilepsy. Novel measures of atrial complexity but also 
traditional ventricular activity measures were estimated from 
a relatively small cohort of 22 patients and no diagnosed 
cardiovascular anomalies. Overall, significantly increased 
atrial signal complexity (lower regularity; 7 of 9 patients with
atrial changes) and/or significantly increased heart rate (8 of 
9 patients with ventricular changes) were identified in almost 
70% of patients in peri-ictal intervals. Although these 
parameters are representative and not exhaustive measures of 
cardiac activity and ECG morphology, initial findings 
suggest that measurable electrocardiographic changes occur 
frequently in patients during seizure evolution, in some cases 
hours before ictal onset. These changes could be leveraged to
improve the field’s fundamental understanding of the impact 
of seizures on the autonomic system and how they modulate 
cardiac activity. Given the heterogeneity of epilepsy in 
children, these results need to be validated in a large cohort. 
Finally, additional ventricular parameters (e.g., the T-wave 
alternans, which has been previously reported in epilepsy 
studies [10]) and atrial signal measures also need to be 
investigated and compared for seizure sensitivity/specificity.
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