
  

  

Abstract—Brain-computer interface (BCI) is a 

communication system that allows a direct connection between 

the human brain and external devices. With the application of 

BCI, it is important to estimate vigilance for BCI users. In order 

to investigate the vigilance changes of the subjects during BCI 

tasks and develop a multimodal method to estimate the vigilance 

level, a high-speed 4-target BCI system for cursor control was 

built based on steady-state visual evoked potential (SSVEP). 18 

participants were recruited and underwent a 90-min continuous 

cursor-control BCI task, when electroencephalogram (EEG), 

electrooculogram (EOG), electrocardiography (ECG), and 

electrodermal activity (EDA) were recorded simultaneously. 

Then, we extracted features from the multimodal signals and 

applied regression models to estimate vigilance. Experimental 

results showed that the differential entropy (DE) feature could 

effectively reflect the change of vigilance. The vigilance 

estimation method, which integrates DE and EOG features into 

the support vector regression (SVR) model, achieved a better 

performance than the compared methods. These results 

demonstrate the feasibility of our methods for estimating 

vigilance levels in BCI. 

I. INTRODUCTION 

A brain-computer interface (BCI) is a system that 
measures central nervous system (CNS) activity and converts 
it into artificial output. It replaces, restores, enhances, 
supplements, or improves natural CNS output, and thereby 
changes the ongoing interactions between the CNS and its 
external or internal environment [1]. BCIs can be used to 
improve the quality of life of users with the loss of 
neuromuscular control [2] as well as provide help for healthy 
operators. Thereinto, steady-state visual evoked potential 
(SSVEP)-based BCI has excellent signal-to-noise ratio (SNR), 
high information transfer rate (ITR) and learnability [3, 4] and 
has received increasing interest. In the field of SSVEP-based 
BCI, the encoding methods and decoding methods of SSVEP 
are very important directions, whose goal is to improve 
performance [4]. Recently, some studies have found that the 
absence of vigilance is one of the most important factors 
leading to the decline of human performance in 
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human-computer interaction, for example, driving tasks [5, 6]. 
Thus, in SSVEP-based BCI, as one human-computer 
interaction system, the performance of users may be affected 
by their vigilance. Therefore, it is necessary to explore the 
relationship between the performance and vigilance status of 
users under long-term SSVEP-based BCI tasks, and further to 
develop methods to estimate vigilance in BCI tasks. 

Vigilance is a vital cognitive state and is usually defined as 
the ability of organisms to maintain long-term attention to 
stimuli or tasks [7]. In the past few years, some modalities for 
estimating vigilance levels have been used in simulated 
vehicle-driving tasks or flight tasks [5, 8]. Among these 
modalities, physiological signals have been found to be 
relevant for different vigilance levels [6]. Thereinto, 
electroencephalogram (EEG) is considered as a reliable 
indicator for vigilance estimation because of its advantages of 
high temporal resolution and relatively direct brain 
information presentation [9-11]. Some studies reported that 
the change in the cognitive state was usually accompanied by 
the significant changes of the power spectrum of EEG 
frequency bands, such as delta, theta, alpha, beta, and gamma 
bands [12, 13]. Shi et al. found that the power spectral density 
(PSD) in the posterior brain region is an effective feature for 
estimating the driver’s vigilance states [10]. Based on PSD 
and differential entropy (DE) extracted from EEG signals, Wu 
et al. developed a novel regression network to detect driver’s 
vigilance [14]. These studies proved the feasibility of using 
EEG signals to detect drivers’ vigilance levels. 

Electrooculogram (EOG) is another widely used 
physiological signal in the estimation of vigilance. It has the 
characteristics of easy setup and high SNR. Studies found that 
EOG features (e.g., slow eye movements and spontaneous 
eyelid closures) are efficient indicators for vigilance 
estimation. Ma et al. used EOG features to detect the 
vigilance level of subjects during a monotonous task [15]. 
Zhang et al. applied a novel electrode placement method on 
the forehead and extracted forehead EOG features to detect 
driving vigilance [16]. In short, some features of EOG signals 
could be used to represent the loss of vigilance in the driving 
or flight tasks. 

Electrocardiography (ECG) signals contain information 
highly related to vigilance status. As one of the most useful 
features in ECG-based studies, heart rate variability (HRV) is 
an important indicator to evaluate the autonomic nervous 
system (ANS) status, such as fatigue status [17]. Recently, 
HRV has been adopted in vigilance estimation research and 
received a satisfactory performance [18]. In addition, 
electrodermal activity (EDA) has also been used in the 
estimating of vigilance. It has been shown to have a 
meaningful relationship to visual attention [19]. 
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On the other hand, multimodal approaches for vigilance 
estimation have been developed. Awais et al. recognized the 
alert and drowsy state with high accuracy by using the support 
vector machine (SVM) from EEG and ECG signals [20]. 
Zheng et al. proposed a multimodal approach to estimate 
vigilance in a simulated driving environment [13]. The fusion 
of EEG features and EOG features has been utilized for 
estimating vigilance, and received an improved performance 
over EEG and EOG alone. These results demonstrated that 
different modalities contain complementary information and 
features from different modalities can be integrated to 
construct a more efficient vigilance estimation method [13]. 

Researchers have studied vigilance state during simulated 
vehicle-driving tasks or flight tasks. However, to our 
knowledge, previous studies have not explored the vigilance 
state during BCI tasks. Also, the single- or multi-modal 
vigilance estimating approach for SSVEP-based BCI has not 
been reported. In this paper, we designed a 4-target 
brain-controlled cursor platform based on SSVEP and 
conducted an online cursor control experiment to collect the 
multimodal signals (EEG signals, EOG signals, ECG signals, 
and EDA signals) of subjects during a long-term BCI task. 
Then, the widely used features of the multimodal signals were 
extracted and analyzed. Next, the useful features were fed into 
regression models to estimate vigilance levels. We found that 
the vigilance levels of subjects have changed in the 
experiment and some features have a close relationship with 
the vigilance in the BCI task. The experimental results suggest 
that an acceptable approach to estimate vigilance for 
SSVEP-based BCI is established in our study.  

II. METHOD 

A. Subjects  

18 healthy subjects (five females, 26±4 years old) with 
normal or corrected-to-normal vision were recruited in the 
experiment. The subjects attended the experiment during early 
afternoons (13:00) or nights (18:30) and were asked to avoid 
drinking alcohol or coffee before the experiment. All of them 
signed the informed consent forms before the experiment. The 
experiment was performed according to the standards of the 
Declaration of Helsinki, and the study was approved by the 
Research Ethics Committee of Chinese Academy of Sciences, 
China. 

B. Experiment 

Each participant underwent a 90 min sustained 
cursor-control task based on SSVEP-based BCI, and the 
procedure is shown in Figure 1. During the task, 4 stimuli 
flickered at the same time and lasted until the end. The 
subjects needed to focus on one of the stimulus targets 
independently, and the BCI system decoded SSVEP to control 
the cursor move along the path step-by-step in the designed 
scene. The duration of each command (step) was about 1.2 s, 
and the position of the cursor was updated once. The circular 
control path we designed in this study is simple, single, and 
monotonous, which is more likely to cause vigilance 
decrement of the subjects. 

 

Figure 1. Procedure and stimulus interface of the experiment. 

C. SSVEP-based BCI 

In this study, we designed a SSVEP-based BCI system. 
The visual flicks were modulated by the sampled sinusoidal 
stimulation method [21] in the stimulus interface to evoke 
SSVEP, as shown in Figure 1. The stimulus interface was 
presented on a 19-inch LED screen with a resolution of 
1280×1024 pixels and a refresh rate of 60 Hz. Each stimulus 
was presented within a 100×100 pixels square, which 
corresponded to the basic control intentions (commands) of 
moving-downward, turning-left, moving-upward, and 
turning-right. In order to get a stronger SSVEP response and 
avoid harmonic interference, the stimulus frequencies were set 
at 8 Hz, 9 Hz, 10 Hz, and 11 Hz, respectively.  

To achieve frequency detection, filter bank canonical 
correlation analysis (FBCCA), a no-training algorithm, was 
adopted in our study [4]. FBCCA is an extended method to 
improve the accuracy of canonical correlation analysis (CCA) 
in the frequency detection of SSVEP. It decomposes the full 
frequency range of EEG data into sub-bands and calculates the 
correlation coefficients between each sub-band and the 
reference signal, respectively [4]. The maximum weighted 
sum of the correlation coefficients is used to determine the 
classified results of SSVEP.  

The details of frequency detection are as follows. First, the 
EEG data streams were acquired from the EEG acquisition 
server in real-time via TCP/IP. The data of eight channels (O1, 
Oz, O2, PO3, POz, PO4, PO7, and PO8) over the occipital and 
parietal areas were selected for target identification. Then the 
selected data were processed by a band-pass filter (1-100 Hz) 
and downsampled to 250 Hz. Next, the 2-s epoch data were 
fed into the FBCCA algorithm for classification. In this study, 
a pseudo classification result was calculated within a 2 s time 
window with a 0.4 s moving step. In order to ensure the 
classification accuracy, we conducted an available result 
judgment in each of three-pseudo classification results (1.2 s). 
If the three pseudo results are the same, an available 
classification result was acquired. Otherwise, there is no 
available result output and wait for the next round of 
three-pseudo classification results. So, the interval of each 
available classification result was about 1.2 s. In FBCCA, we 
set N=7 (the number of sub-bands) and the frequency of the 
n-th sub-band range from n×8 Hz to 88 Hz. The better 
empirical values of a, b, and Nh (the number of harmonics) 
were 1.25, 0.25, and 5, respectively. All the above parameters 
were set according to [4]. Finally, the available classification 
results were transformed into commands and sent to the 
designed interface via TCP/IP. 

D. Multimodal data acquisition 

During the whole experiment, EEG signals, ECG signals, 
EOG signals, EDA signals, and eye movement signals of the 
participant were acquired synchronously. The sampling rate 
of these signals was 1000 Hz. The EEG signals and EOG 
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signals were continuously recorded using a 64-channel 
Synamps2 system (Neuroscan, Inc.) and the 64 EEG 
electrodes were placed on the scalp according to the 
international 10-20 system. EOG signals were recorded from 
the 4 electrodes placed on the left and right outer canthus and 
above and below the left eye, respectively. The impedance of 
EEG and EOG electrodes was maintained below 10 kΩ, and 
the reference and ground electrodes were placed on the M1 
(left mastoid) and AFz channels, respectively. The ECG 
signals were measured using three electrodes (according to 
the Einthoven lead-II configuration) with an ECG amplifier 
(BIOPAC System, Inc.). The EDA signals were collected 
using an EDA amplifier (BIOPAC System, Inc.) and the two 
electrodes were placed on the middle phalanges of the middle 
and ring fingers. Besides, the eye movement signals were 
measured by EyeLink eye tracker (SR Research Ltd., Canada) 
with a PC for doing the image processing. 

E. Data preprocessing and feature extraction 

The EEG data were first re-referenced to the average 
signal of left and right mastoids, and then processed with a 
band-pass filter between 1 and 50 Hz, down-sampled to 200 
Hz. To remove the artifacts, an Automatic Artifact Removal 
(AAR) toolbox [22] was applied. And then, the EEG data were 
divided into non-overlapping 4-s segments and then the 
baseline of each segment was extracted and removed. 

The widely used features, PSD and DE, have shown valid 
and good performance in the areas of emotion recognition and 
fatigue driving detection. Thus, we used PSD and DE in this 
study. PSD feature and DE feature of each EEG segment were 
calculated using Short-term Fourier Transforms (STFT) from 
delta band (1-4 Hz), theta band (4-8 Hz), alpha band (8-13 Hz), 
beta band (13-30 Hz), and gamma band (30-50 Hz). Following 
the previous study, the DE can simply be calculated by the 
following formulation [13]: 

h(X) = 
1
2

log(2πeσ2) ,                             (1) 

where the variable X obeys the Gaussian distribution N(μ, σ2).  

The EOG data were first re-referenced to the average 
signal of the left and right mastoids, and then filtered with a 
30 Hz low-pass filter to eliminate the noise. Finally, the 
filtered data were down-sampled to 200 Hz and split into 4-s, 
non-overlapping segments. After the above preprocessing, 
the pure horizontal EOG (HEOG) and vertical EOG (VEOG) 
data were acquired. To extracted the features, we first applied 
the wavelet transform method [23] to achieve reliable edge 
detection of VEOG and HEOG and then used the peak 
detection algorithm to detect the blink events and saccade 
events. Finally, we extracted a total of 36 EOG features from 
the detected blink events and saccade events, refer to the 
literature [13] for more details. 

For ECG data, a band-pass filter between 2 and 40 Hz was 
used to remove noise. Next, the data were down-sampled to 
200 Hz and split into 4-s, non-overlapping, detrended 
segments. To extract the heart rate (HR) and HRV features for 
every segment, the RR intervals were calculated first with a 
sliding window (56-s overlapping). Then a total of 25 features 
about HR, time-domain HRV, frequency-domain HRV were 
obtained, refer to [24] for details.  

To reduce the noise and remove the artifacts, a low-pass 
filter with a cutoff frequency at 10 Hz was applied for the 
EDA data. Next, the filtered EDA data were down-sampled to 
200 Hz and segmented to non-overlapping epochs of 4 s. In 
the end, 8 EDA features were obtained. They are the 
maximum, minimum, mean, standard deviation, variance, 
and quadratic sum of EDA amplitude, the average and root 
mean square of the first derivative of EDA amplitude. On the 
whole, there were 2×(5×62) (bands×channels) EEG features, 
36 EOG features, 25 ECG features, and 8 EDA features for 
each segment. And all the features were normalized to the 
range from zero to one before being input into the regression 
models. 

F. Vigilance labeling 

PERCLOS, the PERcentage of eye CLOSure over time, 
has been used as the label (ground truth) to estimate vigilance 
in this study. According to the eye movements information 
(such as blink duration, saccade duration, fixation duration) 
acquired from the eye tracker, the PERCLOS index values 
were calculated from the percentage of the durations of blinks 
and ‘CLOS’ over a specified time interval as follows [13]:  

PERCLOS = 
blink + CLOS

blink + fixation + saccade + CLOS
 ,      (2)  

where ‘CLOS’ denotes the duration of the eye closures. And 
the PERCLOS values (ranges from 0 to 1) were further 
smoothed (sliding average). 

G. Regression 

As a human intrinsic mental state that involves temporal 
evolutions, the vigilance of users is a dynamic changing 
process [13]. The outcome of the regression algorithm is to 
predict continuous values, thus, we used the regression 
algorithm for vigilance estimation. In this study, three 
regression models, support vector regression (SVR), 
Bayesian ridge regression (BRR), and gradient boosting 
regressor (GBR), were performed independently for each 
participant. SVR is a supervised learning method and 
constructs a hyperplane that optimally predicts the 
distribution of samples. GBR is an integrated model with high 
performance and good stability. In this paper, we used a SVR 
model with a linear kernel. In addition, the 
minimum-Redundancy-Maximum-Relevance (mRMR) 
algorithm [25], a powerful feature selection method based on 
minimum redundancy and maximum relevance conditions, 
was adopted to realize the multimodal features selection. The 
three algorithms were implemented based on the Python 
package scikit-learn. In the aspect of performance evaluation, 
the root mean square error (RMSE) and correlation 
coefficient (COR) are conventional metrics of regression 
models and were applied in our study. The results were 
verified by a 5-fold cross-validation method and we 
concatenated the predicted results and labels of the five 
sessions and calculated the evaluation metrics. 

III. RESULTS AND DISCUSSIONS  

A. Relationship between representative features and 

vigilance  

Figure 2 shows the PERCLOS, the classification accuracy 
of SSVEP-based BCI tasks, the maximum blink rate of EOG, 
the HR of ECG, and the mean value of EDA of one subject 
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throughout the experiment. It can be seen from the PERCLOS 
subplot that the vigilance level changed significantly during 
the whole experiment. For example, in the intervals 601-680, 
the value of PERCLOS is 1 when the subject was asleep. 
Following the traditional definition of vigilance level based 
on PERCLOS value [13, 14], the PERCLOS values in the 
range of 0-0.35 and 0.36-1 represent the high-vigilance level 
and the low-vigilance level, respectively. As shown in Figure 
2, the classification accuracy has a close relationship with 
PERCLOS. In the low-vigilance level, the classification 
accuracy is relatively low. This indicates that the performance 
of subjects is related to vigilance level. Compared with the 
high-vigilance level, the subject has a lower value of HR and 
a higher mean amplitude of EDA in the low-vigilance level. 
As for the maximum blink rate, its value is zero during the 
intervals 601-680, since the subject was asleep. Therefore, 
these features are related to vigilance and have the potential to 
be used to estimate vigilance. 

 

Figure 2. The PERCLOS and some features of one subject in the experiment. 

For the same subject, the averaged PSD of five bands in 
the high-vigilance level (intervals 1-80 on Figure 2) and 
low-vigilance level (intervals 601-680 on Figure 2) were 
calculated respectively, and the topographical maps based on 
the averaged PSD are depicted in Figure 3. The distribution of 
the topographical map based on average PSD is obviously 
different in the different frequency bands and different 
vigilance levels. In the high-vigilance level, the delta-band 
spectrum power is mainly distributed in the prefrontal region, 
while the alpha-band power is mainly distributed in the 
occipital and parietal regions. It is consistent with the brain 
activity of the subjects when they performed the SSVEP task 
in the high-vigilance level. In the low-vigilance level, the 
subject was asleep and there are the increased PSD of delta 
and theta bands in the frontal region. These results support 
that the increasing trend for the ratio of slow and fast waves of 

EEG activities reflects decreasing attentional demands [26]. 

 
Figure 3. Topographical maps based on the averaged PSD in high-vigilance 

level and low-vigilance level. 

B. Single-modal based vigilance estimation 

In order to keep consistent with the processing of labels, 
we smoothed the predicted results in the same way and then 
calculated the evaluation metrics between the results and 
labels. To compare the performance of different modalities 
under different regression models, the mean RMSE and mean 
COR of all subjects are shown in Table I. Among the single 
modality, the EEG modality achieves the best performance 
for vigilance estimation in terms of both RMSE and COR. 
Within the EEG features, DE outperforms the PSD with 
higher COR and lower RMSE in all models. The reason why 
the EEG modality performs better than other modalities may 
be that it has more dimensional features. And the better 
performance of DE features in EEG modality may be 
attributed to its stability [27]. In the aspect of models, the 
linear SVR model performs better than the other models in 
the EEG modality (DE and PSD) while the BRR model 
achieves the better performance in EOG, ECG, and EDA 
modality. Overall, the combination of DE features and linear 
SVR model provides the best performance with RMSE of 
0.081 and COR of 0.487. 

TABLE I. RESULTS OF THE SINGLE-MODAL FEATURES. 

C. Multimodal based vigilance estimation 

Since the EEG features achieve the best performance, we 
further combined EEG features (DE or PSD) with the features 
of other modalities respectively to investigate the effect of 
multimodal signals on vigilance estimation. In order to 
compare in the same dimension, the mRMR algorithm was 
applied to selected the features from multimodal signals with 
the same dimension (310) as DE features of the single 
modality. The performance of the multimodal features is 
shown in Table II. 

Compared to the PSD-based multimodal methods, the 
DE-based multimodal methods have better performance. 
Moreover, EOG-based multimodal methods outperform the 
ECG-based and EDA-based with higher COR and lower 
RMSE. Also, the best multimodal method is the fusion of DE 
and EOG. In the DE-based multimodal methods, the linear 
SVR model achieves better performance than BRR and BGR 
models. In the PSD-based multimodal methods, the BRR 
model achieves better performance when compared with 
other models. The best result is obtained by combining the 

Single-modal 
Linear SVR BRR GBR 

RMSE COR RMSE COR RMSE COR 

EEG DE 0.081 0.487 0.082 0.470 0.083 0.448 

PSD 0.085 0.427 0.086 0.412 0.085 0.372 

EOG / 0.093 0.131 0.091 0.167 0.092 0.116 

ECG / 0.099 0.048 0.099 0.064 0.099 -0.033 

EDA / 0.097 -0.007 0.101 0.011 0.099 -0.119 
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fusion of DE and EOG features with the linear SVR model, 
whose COR and RMSE are 0.511 and 0.080 respectively. 
Combined with Table I and Table II, the performance of the 
multimodal methods is better than that of the single-modal 
methods with higher COR and lower RMSE. The results 
demonstrate that modality fusion can effectively enhance the 
performance of vigilance estimation in comparison with a 
single modality in the BCI task. 

TABLE II. RESULTS OF THE MULTIMODAL FEATURES. 

Multimodal 
Linear SVR BRR GBR 

RMSE COR RMSE COR RMSE COR 

DE+EOG 0.080 0.511 0.080 0.505 0.082 0.481 

DE+ECG 0.081 0.489 0.082 0.484 0.084 0.441 

DE+EDA 0.082 0.474 0.082 0.468 0.084 0.427 

PSD+EOG 0.083 0.461 0.083 0.462 0.083 0.434 

PSD+ECG 0.085 0.443 0.085 0.445 0.086 0.374 

PSD+EDA 0.085 0.416 0.085 0.424 0.084 0.399 

IV. CONCLUSIONS  

The present study tried to estimate the vigilance levels 
during a BCI task. We designed the cursor-control BCI based 
on SSVEP and acquired the multimodal signals, which 
included EEG, EOG, ECG, and EDA, from subjects during a 
long-term cursor-control task. The features of these signals 
were extracted and the regression models were trained using 
the single modality features and multimodal features to realize 
the estimation of vigilance. The experimental results show that 
the performance during the BCI task was related to the 
vigilance of the BCI user. Among multimodal signals, EEG 
signals can efficiently estimate vigilance in the BCI task. 
Moreover, the multimodal methods can significantly enhance 
the performance of vigilance estimation compared with the 
single modality methods. Combining the fusion of DE and 
EOG features with the SVR model has achieved a satisfactory 
performance of vigilance estimation in BCI tasks. These 
experimental results demonstrate the feasibility and efficiency 
of our proposed approach based on multimodal signals and 
regression models. 
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