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Abstract— Cerebellar ataxia (CA) is defined by disrupted
coordination of movement suffering from disease of the cerebel-
lum. It reflects fragmented movements of the eyes, vocal, upper
limbs, balance, gait, and lower limbs. This study aims to use
a motion sensor to form a simple yet effective CA quantitative
assessment framework. We suggest a pendant device to use
a single kinematic sensor attached to the wearer’s chest to
investigate the balance capability. Via a standard neurological
test (Romberg’s standing), the device may reveal an early
symptom of Cerebellar Ataxia tailoring toward rehabilitation
or therapeutic program. We adopt a transformed-image based
approach to leverage the advantage of state-of-the-art deep
learning models into diagnosis CA. Three transform techniques
are employed including recurrence plot, melspectrogram, and
Poincaré plot. Experiment results show that melspectrogram
transform technique performs best in implementation with Mo-
bileNetV2 to diagnose CA with an average validation accuracy
of 89.99%.

I. INTRODUCTION
Cerebellar Ataxia (CA) is a neurological symptom defined

by a specific problem with balance and coordination. The
clinical setting involves ataxic people to perform many CA
tasks as described in the Scale for Assessment and Rating
of Ataxia (SARA) [1] to reveal any sign of disordered
movement. This assessment scheme is affected heavily by
the clinician’s experience and the inherent subjectiveness of
human involving process.

Defined as a rare symptom, research in CA has a long
history in developing an objective assessment scheme. Ad-
vancement obtained recently in wearable sensor and cloud
computing have encouraged many attempts to develop sup-
portive systems for tele-assessment and tele-rehabilitation
CA. These systems promise to provide a reliable and non-
subjective scheme for measuring the severity of CA and
tracking the rehabilitation progress. Cloud and wearable
setting would provide a continual monitoring capability that
may reveal new CA research insights.
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Recently, there have been many new approaches and ef-
forts to build new supportive assessment systems. Literature
witnesses a wide range of designs from neuron imaging
or external sensory systems. Brain scanning images used
Magnetic Resonance Imaging to discriminate three CA phe-
notypes SCA2, SCA6, AT with an error rate of 13.75% [2].
External sensory systems utilize a broad range of sensors
to capture ataxic behaviours. Eyes’ iris movement [3] was
captured by mobile phone camera to obtain a diagnostic
sensitivity of 0.84 and specificity of 0.77. In limbs, bal-
ance, gait, vocal domains, researchers employed kinematic
sensors, infrared camera, motion camera, googles, balance
mat, EMC, wireless sensing to collect motion or motion-
related data [4], [5], [6], [7]. In these studies, the application
of machine learning limits within the frame of traditional
approaches where collected data are extracted with features
of interest and used to train conventional ML models. These
approaches are known as hand-crafted methodology where
the feature extraction is the most important factor that has
been conducted manually.

The application of deep learning constrains to image-based
data resources. To our best knowledge, the work in [2] is the
only research conducted neural network on brain scanning
images. In this study, we propose a framework by which
IMU and other time-series can train the deep learning models
through image transform techniques. These techniques have
been applied widely and presented high feasibility in another
research [8]. Not exclusive to time series data, we expect
to apply the suggested scheme and leverage deep learning
power in many other existing systems.

II. MATERIAL

A. Participants

TABLE I: General Information of Participants

Ataxic Individuals Healthy Controls

Number of participants 53 24
Age (years) 61.0 ± 11.7 50.4 ± 19.9
Gender (Male/Female) 31/22 6/18
Dominant limb (left/right) 8/45 6/18
Height (centimetre) 170.2 ± 9.12 167.18 ± 9.23

Fifty-three CA individuals and 24 healthy controls partic-
ipated in the trial. Table I shows the demographic details.
Ethical approval was submitted and given by the ethics
committee of the Human Research and Ethics Committee,
Royal Victorian Eye and Ear Hospital, East Melbourne,
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Fig. 1: IMU sensor as a supportive system to assess CA. (a) Romberg’s standing test with an ataxic individual wore an IMU
sensor. (b) Biokin kinematic motion capture sensor. (c) Mobile application as a gateway to record and upload raw data to a
cloud computing. (d) Cloud-based services analyze motion data and return the diagnostic result to clinicians.

Australia (HREC Reference Number: 11/994H/16). Each
subject has been provided a written consent which were
collected before the trial.

B. Experimental Protocol

Subjects in Romberg balancing trial wore a single Biokin
motion sensor on their chest [9]. The sensor was attached by
an elastic strap wrap around their chest and over the shoulder.
IMU Accelerometer sensor was sampled at 50 Hertz/second
compensasing between low frequency human activity and
amount of samples required for the algorithm. Subjects were
instructed to stand upright on their feet placed closed together
as illustrated in Fig. 1. The protocol ideally would last 30
seconds; however, the supporting clinician may stop the test
at any time if severe subjects express risks of falling.

III. METHOD

A. Signal Pre-processing

Raw data was first pretreated by interpolating, low-pass
filtering, and sliding fixed size overlapping window. As
the recurrence plot is suggested to be significant reliability
when data length is more than 1000 samples [10]. We
applied linear interpolation for mid-severe and high-severe
CA individuals if their recorded data were shorter than 1000
samples. Sliding windows were employed to be able to select
the most reliable frame. Matlab (R2020b, MatWorks, USA)
and Tensorflow2 have been employed in this research.

B. Image Transform Techniques

1) Recurrence Plot: A recurrence plot (RP) is an ad-
vanced method to analyse the nonlinear behaviour embedded
in a data [10]. The recurrence plot visualise a square matrix,
in which the matrix elements correspond to the closeness of
a state concerning other states of a dynamical system. The
first step in constructing the recurrence plot is to define the
time delay Rδ,τ (m) of the original signal.

Rδ,τ (m) =


x0(m)

x1(m+ τ)
...

xδ(m+ δτ)

 , 1 ≤ m ≤ N − δτ (1)

where x0(n) is the accelerometer with n samples in range
[1, . . . , N ], N is the data length and xδ(m) is the time
delayed signal where x0(n) = xδ(m + δτ) for n =
m + δτ . δ and τ are pre-defined dimension and time delay
parameters, respectively. The second step is to calculate
distances between pairwise time delay signals using the
Euclidean distance and RP is a heat map representing inter-
distance among time delay signals. Fig. 2 shows the original
recurrence plot of a typical CA individual. In this work, we
modify the original recurrence plot by removing the upper
half and rotating the lower triangle to eliminate redundant
information. This modification reduces the size of input
figures by half so that lowering complexity of DL structure.

(a) Recurrence Plot, Medial-
Lateral axis, Accelerometer.

0 50 100 150 200 250

0

50

100

150

200

250

300

350

400

450

500

(b) Cut and
Rotated
Recurrence
Plot.

(c) Merging three
axes horizontally,
Accelerometer.

Fig. 2: Recurrence plot used to feed into Deep learning
models. (a) Original recurrence plot from accelerometer
(medial-lateral axis). (b) Modified plot to reduce redundant
information. (c) Merging of three axes to form the final plot
to train the models.
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2) Melspectrogram: A spectrogram is a visual represen-
tation of the spectrum of frequencies of a signal as it varies
with time [11]. A spectrogram is generated by a bank of
32 band-pass filters. Fig. 3 illustrates melspectrogram of a
representative person.
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Fig. 3: Melspectrogram image transform from imu signal
(accelerometer, medial-lateral axis). (a) Original melspectro-
gram with bank filters. (b) Stacking three axes melspectro-
grams into one figure to prepare for training the deep neural
networks.

3) Poincaré plot: A Poincaré plot is a measure of RP
employed to evaluate self-resemblance within processes [12].
It quantifies the correlation between two consecutive data
points in IMU signal and visualizes geometrically in a 2D
figure. Fig. 3 plots a presenting person’s kinematic data. By
stacking three axes accelerometers horizontally, we construct
an input figure to feed into DL models.
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Fig. 4: Poincaré Plot transformed image from accelerometer
(medial-lateral axis). (a) Poincaré Plot of one channel of imu
sensor. (b) Plot from three axes place horizontally for deep
learning training and testing.

C. Deep Learning

1) Deep Learning Models:
MobileNetV2: Mobilenet is a lightweight convolutional

architecture that contains 53 layers deep. The model utilises
depthwise separable convolutions in which it fundamentally

implements a single convolution on each of the three colour
channel instead of merging and flattening them.

ResNet101V2: ResNet is a convolutional network that
contains 101 layers deep. The kernel of ResNet introduces
an “identity shortcut connection” in which it bypasses one
or several layers. This technique helps overcome the noto-
rious vanishing gradient problem of deep networks where
the model’s performance becomes saturated or even begins
degrading quickly.

DenseNet201: DenseNet stands for Densely Connected
Convolution Neural Networks (CNN). In its original manner,
CNN has one layer connected only to its adjacent layers.
DenseNet is a variant whereas its layer will be connected to
all other layers in a feedforward manner.

EfficientNetB7: EfficientNet is a convolutional architec-
ture that has been built to design a new baseline network.
EfficientB7 is a network obtained by scaling up the baseline
model. The network has obtained utmost accuracy on the
ImageNet dataset while being smaller and faster than the
best existing convolution neural network.

InceptionV3: Inception-v3 is a CNN comprising 48 con-
nected layers. The model has been trained on the ImageNet
database which contains more than 106 images. The training
dataset contains 1000 object categories such as animals,
pencil, keyboard, and household objects. With the diversified
dataset, the Inception network has been capable of extracting
features tailored to a broad array of images. The model is
constructed from both blocks with pooling, concats, drop-
outs, and fully connected layers.

Xception: Xception is a CNN with 71 connected layers, an
extreme edition of Inception model with a modified depth-
wise separable convolution. Xception architecture depends
purely on depthwise separable convolution layers.

VGG19: VGG19 is an alternation of a very deep convo-
lutional network which has been used in large-scale image
recognition. It comprises 16 convolution layers, 3 fully
connected layers, 5 maxpool layers and 1 output softmax
layer. The model has been trained using an image database
of 14,197,122 images.

2) Transfer Learning: Transfer learning is a technique
to re-utilize knowledge obtained in previous assignment
to resolve relevant ones [13]. Transfer learning has been
used extensively in clinical research where human data was
limited to collect. In this work, we remove the top layer of
the pre-trained models and added two other layers of a global
average pooling 2D and two nodes in the output presenting
healthy controls and patients. The pre-trained models would
help to extract features or texture out of the CA dataset.

IV. DIAGNOSTIC RESULTS

Deep learning models are compared based on their valida-
tion accuracy over 50 epochs. We also considered the training
time, which related tightly to the architecture of DL models.
Table II reported performances of DL models over three
image transform techniques. MobileNetV2 obtained its high-
est diagnostic result of 89.99% accuracy in accordance with
melspectrogam. Fig. 5 illustrated the training and validation
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TABLE II: Validation Accuracy of Deep Learning Model on
Three Transform Techniques

Transform technique
Model Recurrence Melspectrogram Poincaré

MobileNetV2 83.33 89.99 80.00
ResNet101V2 86.67 76.67 83.33
DenseNet201 80.00 68.33 76.67
EfficientNetB7 66.67 76.67 73.33
InceptionV3 83.33 69.99 80.00
Xception 76.67 60.00 80.00
VGG19 63.33 66.67 63.33
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Fig. 5: Validation Accuracy of 89.99% of Melspectrogram
on MobileNetV2.

accuracy as well as the loss of MobileNetV2. Compared
to the traditional ML approach, the image-transform based
scheme suggested in this work yielded a higher classification
accuracy against 88.24% reported in [10]. The ResNet101V2
reached 86.67% accuracy, but the structure was heavier with
a higher number of training parameters and so as training
time. Application of DL eliminated the feature extraction
step, which in turn reduced the engineering labour works.
The suggested methodology was not limited to kinematic
but could be applied on many different data type such as
audio ataxic speech.

V. DISCUSSION

Researchers in the literature classified ataxic versus
healthy controls with more 80% accuracy and estimate
severity with 0.7 correlation with clinical assessment [10].
Occupies its vital role in customizing rehabilitation ther-
apy, phenotype identification remains a challenging ques-
tion. With promising result from applying DL in CA via
image-transform base, we expect to employ further the
suggested scheme tackle problems of the severity estimation
and phenotype identification. To these complicated problems,
DL approach may outperform and provide solutions where
conventional ML approaches seem to have already reached
their limitations.

VI. CONCLUSION

This study suggested a scheme to use image transform
based on deep learning framework to quantitatively asssess
CA. Analysis results showed its possibility to give 89.99%
classification result by using a lightweight convolutional ar-
chitecture with melspectrogram. We noticed that more com-
plex and deeper models such as DenseNet did not guarantee
a higher performance. Future works include utilising tailored
models for texture dataset and stacking two or more different
models with different image input aiming to increase the final
performance.
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