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Abstract— Bioluminescence tomography (BLT) is an ef-
fective noninvasive molecular imaging modality for three
dimensional visualization of in vivo tumor research in small
animals. The approaches of deep learning have shown great
potential in the field of optical molecular imaging in recent
years. However, the common problem with these existing end-
to-end networks is the black box technology, whose solving
process is not theoretically proven. In this work, we proposed
a novel Alternating Direction Method of Multipliers Network
(ADMM-Net) to solve the poor interpretation problem of
internal process. The ADMM-Net combines the framework
of deep learning on the basis of traditional ADMM algorithm
to dynamically learn various parameters of the algorithm
in the form of network. To evaluate the performance of
our proposed network, we implemented numerical simulation
experiments. The results show that the ADMM-Net can
accurately reconstruct the location of the source, and the
morphological similarity with the real source is also higher.

I. INTRODUCTION
As a non-contact and non-ionizing imaging modality,

bioluminescence imaging (BLI) plays an increasingly
significant role in pre-clinical small animal studies [1].
Currently, the applications and value of BLI have been
explored in various areas, including exact tumor imaging,
monitor tumor growth in vivo and therapy monitoring
[2]. Further development of bioluminescence tomogra-
phy (BLT) has upgraded BLI from planar to three-
dimensional (3D) imaging [3]. The 3D bioluminescent
sources inside the object body are able to be recon-
structed based on the surface optical signals detected
by CCD. Mathematically, this inverse process of BLT is
inherently ill-posed problem due to more unknowns than
number of detectors.

In the past decade, a series of novel strategies have
been developed to achieve a more accurate solution.
Initially, ℓ2-norm regularization based reconstruction
methods are applied to improve the accuracy of re-
construction [4]. However, the over-smoothness of ℓ2-
norm results reduce high-frequency feature, and lead to
blurred or spread targets in the reconstructed images
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finally. Subsequently, various sparse algorithms have
been developed based on the theory of compressed
sensing (CS), including adopting a sparse regularization
term (e.g. ℓ0 and ℓ1), using a greedy strategies [5]–
[7]. These algorithms significantly improve the recon-
struction accuracy of BLT. Another typical strategy
to optimize BLT performance is the combination with
prior information. Previous studies have presented that
employment of CT anatomical information and divide
permissible region could effectively enhance the accuracy
and stability of BLT [8]. These promising strategies play
crucial roles for BLT development in pre-clinical study.

The recent development of machine learning has shown
promising potential in optical molecular imaging. Gao
et al. proposed a multilayer perceptron-based inverse
problem simulation (IPS) method firstly, which ap-
plied in vivo tumor BLT reconstruction to improve the
quality [9]. Different from the traditional method, the
machine learning method directly models the inverse
photon propagation by learning the mapping relation
between the surface optical signals and the 3D biolumi-
nescent sources [10]. Since then, other researchers have
come up with other deep learning methods in other
imaging modality. The two-stage deep learning-based
3D reconstruction algorithm was developed to get less
blurry and depth-localized reconstructions by applying
a trained 3D convolutional neural network (CNN) in
second stage to refine the first stage original fluores-
cence distribution in fluorescence molecular tomography
(FMT) [11]. Besides, Huang et al. presented a novel deep
convolutional neural network, gated recurrent unit and
multiple layer perception based method (DGMM) for
FMT reconstruction with more accurate reconstruction
source location [12]. Furthermore, a novel multilayer fully
connected neural network (MFCNN) was developed by
Zhang et al. to improve the performance of Cerenkov
luminescence tomography (CLT) reconstruction with the
superiority in terms of accuracy and stability [13]. Guo
et al. proposed an end-to-end 3D deep encoder-decoder
(3DEnDecoder) network for FMT, and achieved accurate
reconstruction results in regular phantom [14]. These
thrilling achievements indicate the machine learning has
tremendous potential in optical tomography. However,
existing based on end-to-end machine learning networks
are invisible process with poor interpretability in internal
solution. Moreover, the dimension of test data needs
to be consistent with the training data, which further
limits the development of the networks in practical
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application. Thus, the reconstruction of BLT based on
machine learning is still a pressing challenge to be solved.

In this paper, we design the effective deep architectures
inspired by Alternating Direction Method of Multipliers
(ADMM) algorithm to achieve high-quality BLT recon-
struction and overcome poor interpretability problem.
This deep architecture, call ADMM-Net, consist of three
layers, each of which corresponds to an iteration in
ADMM algorithm [15]. Given a surface optical sig-
nals data, it flows over the network and outputs a
reconstructed data. All the parameters (e.g., penalty
parameters, update rates, etc.) in the deep networks
can be discriminatively learned from training pairs of
surface luminescence data and its true source by L-
BFGS optimization and back-propagation over the deep
architectures. Simulation experiments demonstrated that
the proposed ADMM-Net method achieved accuracy,
stability and practicability of BLT reconstruction.

II. Method
A. Photon Propagation Model

The conventional model-based reconstruction depends
on the description of photon propagation in biological
tissue. Usually, the first-order approximate model of
radiative transfer equation (RTE) is utilized to modeling
the photon propagation. The diffusion approximation
equation can be described as follows:

−∇ · [D(r)∇Φ(r)] + µa(r)Φ(r) = S(r) r ∈ ∂Ω (1)

where D(r) is the diffusion coefficient, r is the position
vector, Φ(r) is the photon flux density represents ab-
sorption coefficient, S(r) is the source, Ω is the domain
under consideration.

In order to solve eq.(1), based on the finite element
method (FEM), a relationship between the inside biolu-
minescent source x and the photon flux of luminescence
light Φ can be inferred as [16]:

Ax=Φ (2)

where A is the system matrix of photon propagation.

B. ADMM Algorithm
The above ill-posed problem can also be optimized

efficiently by ADMM algorithm. The following solver is
general forms of ADMM algorithm:

min
x

{
1
2 ||Ax− Φ||22 +

L∑
l=1

λlf(zl)

}
s.t. zl = x, ∀l ∈ {1, 2, . . . , L}

(3)

where λ denotes the regularization parameter and f
represents regularization terms on x, e.g., lp-regularizer
(p ∈ [0, 1]) for a sparse prior.

Its augmented Lagrangian function is:

Lρ(x, z, α) =
1
2 ||Ax− Φ||22 +

L∑
l=1

[
λlzl+ < αl, x− zl > +ρl

2 ||x− zl||22
] (4)

where α= {αl} are Lagrangian multipliers representing
dual variables and ρ= {ρl} are penalty parameters re-
spectively. For simplicity, we use scaled definition of
βl=

{
αl

ρl

}
(l ∈ {1, 2, . . . , L}), in this case, ADMM alter-

natively optimizes {x, z, β} by solving the following three
subproblems:

argmin
x

1
2 ||Ax− Φ||22 +

L∑
l=1

ρl

2 ||x+ β − zl||22,

argmin
z

L∑
l=1

[
λlg (zl) +

ρl

2 ||x+ β − zl||22
]
,

argmax
β

L∑
l=1

⟨βl, x− zl⟩,

(5)

C. BLT Reconstruction Based on ADMM-Net
In details, our proposed model ADMM-Net consists

of three layers: reconstruction layer, nonlinear trans-
formation layer and multiplier update layer, according
to three iterations in ADMM algorithm. The network
architecture is shown in Fig. 1.

Fig. 1. The network architecture of ADMM-Net.

1) Reconstruction layer X(n): This layer reconstructs
a photon intensity after the reconstruction operation.
Given the inputs zl

(n−1) and βl
(n−1), the output of this

layer is defined as:

x(n)=[ATA+

L∑
l=1

ρl
(n)]−1[ATΦ+

L∑
l=1

ρl
(n)(zl

(n−1)−βl
(n−1))]

(6)
where ρ

(n)
l denotes the l-th penalty parameter,

l=1, 2, . . . , L, and Φ is the photon intensity on the object
surface, z

(0)
l and β

(0)
l are initialized to zeros, therefore

x(1) =

(
ATA+

L∑
l=1

ρ
(1)
l

)−1 (
ATΦ

)
.

2) Nonlinear transform layer S(n): This layer performs
nonlinear transform inspired by the shrinkage function.
We aim to learn more general functions using piecewise
linear function rather than setting it to be a shrinkage
function determined by the regularization term. Given
the inputs β

(n−1)
l , the output of this layer is defined as:

zl
(n) = S(x(n) + βl

(n−1);λl/ρl) (7)

where S (·) is a nonlinear shrinkage function with the
parameters λl/ρl, l ∈ {1, 2, . . . , L}.
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3) Multiplier update layer M (n): Given inputs β(n−1)
l ,

x
(n)
l and z

(n)
l , the output of this layer is defined as:

β
(n)
l =β

(n−1)
l +η

(n)
l × (x

(n)
l − z

(n)
l ) (8)

where η
(n)
l represents an update rate for updating the

multiplier.

III. Experiments Setting
A. Simulation Data Set

Different from the end-to-end deep learning network
framework, ADMM-Net is a networked algorithm based
on formula derivation, with fewer internal parameters
and only needs the small sample data set. However, due
to the difficulty in obtaining in vivo experimental data,
the complexity and time consuming of the experiment,
and the difficulty in obtaining the actual distribution of
the source in mice. In order to overcome these problems,
we utilized the DE method to collect the surface optical
signal distribution as training data, and the true source
as label. All simulation samples were obtained using
a standard cylinder model, which was discretized 1163
nodes and 6237 tetrahedrons, as show in Fig. 2. The
organs mainly contain muscle, heart, left lung, right
lung, stomach and bone, and the corresponding optical
parameters are reference in [16]. Then 100 random points
in the right lung region were used as the source to get
100 surface photon intensities as training data set.

Fig. 2. The model of simulation data set.

B. Numerical Simulation Experiments Setting
In the training data, the light source is a point light

source distributed in the right lung region. The single
light source experiments were conducted to study the
effect of different light source locations on the recon-
struction performance of ADMM-Net. The spherical light
source with a radius of 1mm were implanted in the left
lung (0,6,15)mm, stomach (-5, 0, 8)mm and muscle (-5,
0, 20)mm, respectively.

The double sources simulation experiments studied the
influence of the distance between the center of the light
source on the reconstruction effect. The radius of the two
light circles was 1mm, the distance between the center
of the two light sources were 10mm, 8mm and 4mm,
and the distance between the edge and the edge were

TABLE I
The quantitative results in single source reconstructions.

source
location

Recon. location
(mm)

LE
(mm)

Dice

left
lung

(0.05, 6.46, 14.74) 0.53 0.75

stomach (-5.67, -0.19, 8.11) 0.70 0.70
muscle (-5.08, 0.16, 19.67) 0.38 0.83

8mm, 6mm and 2mm, respectively. For quantitative
assessment, two common indexes were used, including
location error (LE) and Dice coefficient [16].

IV. results
1) Single Source: Fig. 3 shows the reconstruction

results of the source in different tissues, where (a)-
(c) are the 3D reconstruction results of the left lung,
stomach and muscle, respectively, and (d)-(f) are the
corresponding 2D results display respectively. In 3D, the
blue sphere is the real source, and the red area is the
reconstructed source. In 2D, the black circle inside is
the real source area, while the fluorescent area is the
reconstructed source. Tab. I shows the corresponding
quantitative analysis indexes. It can see all of three
experiments reconstruct the source successfully. When
the source is in the left lung, there are large amounts
of artifacts and the LE is larger than the other two
experiments. And the reconstruction source works best
in muscle with LE of 0.38mm, which is almost identical
to the real source with Dice of 0.83.

Fig. 3. The reconstruction results of single light source. (a)-(c)
are the 3D results of the source in left lung, stomach and muscle,
respectively; (d)-(f) are the corresponding 2D cross section.

2) Doubel Sources: Fig. 4 shows the reconstruction
results of double sources with different spacing of sources.
(a)-(c) are the 3D reconstruction results when the edge-
to-edge distance are 8mm, 6mm and 2mm respectively.
(d)-(f) are the corresponding two-dimensional result
display respectively. The blue sphere is the real source,
and the yellow area is the reconstructed source. In 2D,
the black circle inside is the real source area, while the
fluorescent area is the reconstructed source. Tab. II shows
the corresponding quantitative analysis indexes. It can
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TABLE II
The quantitative results in double sources reconstructions.

distance
(mm)

Recon. location
(mm)

LE
(mm)

Dice

8 (-4.39, 4.68, 15.26) 0.74 0.52
(-5.85, -5.78,

15.11)
1.16 0.61

6 (-5.06, 4.14, 15.14) 0.20 0.58
(-5.17, -4.29,

14.64)
0.49 0.79

2 (-5.01, 2.77, 14.97) 0.45 0.52
(-4.83, -1.93,

15.24)
0.30 0.84

be see that when the distance from edge to edge is the
maximum of 8mm, the reconstruction effect is not as
good as that when the distance is 6mm, which indicates
that it is not just the greater the spacing, the better the
reconstruction. When the distance from edge to edge is
8mm, the corresponding LE is the largest, and in the
other two cases, the difference between LE and Dice is
small with under0.5mm. Moreover, when the edge to
edge distance is 2mm, two sources can be reconstructed
well, indicating that the spatial resolution of ADMM-Net
can reach 2mm.

Fig. 4. The reconstruction results of double sources. (a)-(c) are the
3D results with edge-to-edge distances of 8mm, 6mm and 2mm,
respectively; (d)-(f) are the corresponding 2D cross section.

V. CONCLUSIONS
According to iterative solution process of ADMM algo-

rithm, we proposed a novel deep architectures ADMM-
Net for BLT in this paper. The ADMM-Net combines
the advantages of model-based solution method in in-
tegrating knowledge domain with the advantages of
deep learning method in effective parameter learning.
This novel approach calculates the gradient in reverse
process of dynamic learning related parameters, so do
not need to set manually. Compared with the model
based reconstruction algorithm, the ADMM-Net avoids
error caused by improper selection of parameters such
as regularization. Compared with the existing machine
learning-based methods, the internal solving process is
visible, and the algorithm is more interpretable. In

addition, there is no restriction on the dimension of
training data and test data. It only needs one training
to test the data of other different dimensions, which is
more applicable.

To verify the performance of ADMM-Net, we design
single and double source simulation experiments. The
source reconstructed by ADMM-Net has a good effect
in terms of morphological similarity, and its Dice value
is basically above 0.7, and some groups are even greater
than 0.8. Moreover, in the double source experiment,
when the distance from edge to edge is 2mm, the two
sources can also be reconstructed well. More simulation
experiments based on complex mouse model and in vivo
experiments will be conduct to verifiy the performance
of ADMM-Net. Beside that, the disadvantage is that the
network increases the process of solving the gradient in
reverse, which leads to the increase of the complexity
of solving and the longer the time needed to consume.
Our future work will focus on solving these challenges.
We believe that this novel deep architectures of borrow-
ing machine-learning thinking holds great potential of
opening a new gate for BLT reconstruction.
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