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Abstract— Autocorrelation in functional MRI (fMRI) time
series has been studied for decades, mostly considered as
noise in the time series which is removed via prewhitening
with an autoregressive model. Recent results suggest that the
coefficients of an autoregressive model fit to fMRI data may
provide an indicator of underlying brain activity, suggesting
that prewhitening could be removing important diagnostic
information. This paper explores the explanatory value of these
autoregressive features extracted from fMRI by considering
the use of these features in a classification task. As a point of
comparison, functional network based features are extracted
from the same data and used in the same classification task. We
find that in most cases, network based features provide better
classification accuracy. However, using principal component
analysis to combine network based features and autoregressive
features for classification based on a support vector machine
provides improved classification accuracy compared to single
features or network features, suggesting that when properly
combined there may be additional information to be gained
from autoregressive features.

I. INTRODUCTION

The analysis of functional MRI (fMRI) is a challenging
time series analysis problem, with many potential sources
of noise including scanner drift, physiological artifacts, and
subject motion [1]. fMRI time series are known to exhibit
autocorrelation, which are at least partially due to noise [2],
[3]. Addressing autocorrelation in fMRI time series remains
an area of research as autocorrelation between subsequent
time points affects the reliability [4] and invalidates the
assumptions [5] of the General Linear Model, a widely used
task based fMRI analysis framework. Autocorrelation has
also been shown to affect measures of functional connectivity
in resting state fMRI [6], [7].

Recently Arbabshirani et. al found that autocorrelation at
a voxel level, as captured by a lag 1 autoregressive (AR)
model fitted to a voxel level time series, shows differences
based on whether subjects are performing a task or not and
based on whether the subject had a diagnosis of schizoprenia
[8]. While this paper takes the AR approach in Arbabshirani
et. al as a starting point for investigation, it is important to
note that the AR approach shares commonalities with many
others in the fMRI literature.

At a voxel level, brain activity has been studied using
local signal characteristics such as the Amplitude of Low
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Frequency Fluctuations (ALFF) [9] and scale invariance in
the power spectrum [10]. When considering how regions of
the brain interact, there are a number of effective connectivity
[11] approaches which model interactions between regions
based on temporal information in the fMRI time course, such
as Dynamic Causal Modeling [12], Granger Causality [13],
and Vector Autoregressive Models [14].

However, when understanding alterations of brain func-
tion in conditions such as depression, machine learning
approaches typically use functional connectivity [15]–[18].
He et al. combined multiset canonical correlation analysis
and joint independent component analysis with a support
vector machine (SVM) classifier to obtain a 99% accuracy
in discriminating between two classes of depression [16].
Similar binary classification studies introduce a sparse low
rank model and Fisher score feature selection to obtain a
95% accuracy [17], and a time-varying dynamic functional
connectivity to achieve a 99% accuracy [18], both involving
SVM classifiers. More recent advances have been towards
adopting neural networks, such as Jun et al. using graph
convolutional networks to obtain a 79% accuracy [19].

Currently, measures of functional connectivity and effec-
tive connectivity are used independently in the literature.
To properly understand the advantages and disadvantages of
these approaches requires comparing behavioral outcomes
with multiple measures calculated on the same data set.
Here we take a necessary first step to understand the utility
of autoregressive features by comparing them to standard
measures of functional connectivity in fMRI in performing
a depression and anxiety classification task.

This paper is organized as follows. In Section II we
describe the relevant methodology, including preparation of
the data in Section II-A, the network based and autoregres-
sive features in Section II-B, and the selected classification
pipelines in Section II-C. The results of the evaluation of
the classification pipelines are shown in Section III and the
paper concludes in Section IV.

II. METHODS

A. Data Preprocessing

This paper considers a subset of the subjects from the
Boston Adolescent Neuroimaging of Depression and Anxiety
study [20], [21]. We refer the reader to [20] for details on
the image acquisition. All experimental procedures involving
human subjects were approved by the MIT Ethical Review
Board. These data were preprocessed according to the Hu-
man Connectome Project minimal preprocessing guidelines
[22]. There are 200 subjects, of which 63 are Controls, 64 are
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Classifier Dim. Reduction Autoregression Positive Strength Negative Strength Clustering Auto+Pos All Network All Features
SVC None 0.540 0.617 0.467 0.655 0.501 0.524 0.503

PCA 0.506 0.558 0.427 0.483 0.430 0.563 0.620
Best K MI 0.543 0.657 0.484 0.447 0.524 0.467 0.558

XGBoost None 0.464 0.466 0.580 0.444 0.484 0.504 0.540
PCA 0.637 0.353 0.466 0.483 0.561 0.315 0.558
Best K MI 0.484 0.481 0.524 0.483 0.521 0.543 0.466

TABLE I: Balanced Accuracy on the test set for each combination of initial features, dimensionality reduction, and final
classifier. Entries are bold if the classifier performed best in the comparisons described in the text and italicized if the
classifier performed best over all attempted feature sets.

Classifier Dim. Reduction Autoregression Positive Strength Negative Strength Clustering Auto+Pos All Network All Features
SVC None 0.671 1.596 -0.425 2.026 0.030 0.299 0.045

PCA 0.070 1.031 -1.275 -0.340 -0.888 0.745 1.415
Best K MI 0.535 1.915 -0.238 -0.766 0.299 -0.425 1.031

XGBoost None -0.674 -0.507 1.037 -1.792 -0.238 0.057 0.671
PCA 1.741 -2.370 -0.507 -0.340 0.781 -3.887 1.031
Best K MI -0.238 -0.994 0.299 -0.340 0.345 0.535 -0.507

TABLE II: Number of standard errors away from a Balanced Accuracy of 0.5, which corresponds to only choosing one
class on the test set for each combination of initial features, dimensionality reduction, and final classifier. Standard error
was estimated via jackknife resampling. Entries are bold and italicized to match Table I.

diagnosed as Anxious, and 73 are diagnosed with depression
or comorbid anxiety and depression. For the purposes of this
comparison, we treat all patients as a single group, resulting
in 137 patients and 63 controls.

Following a standard network based approach [23], pre-
processed time series data was extracted in the 360-node
Glasser Atlas [24]. Data was also standardized so that the
mean is 0 and the standard deviation is 1 within each session
to allow multiple sessions to be concatenated.

In order to calculate network metrics, a fully connected
functional connectivity matrix was computed. In this net-
work, the nodes correspond to areas of the brain as delineated
in the Glasser atlas. The edges are measures of functional
connectivity, i.e. the edge which connects node i and node
j, wij , is the Fischer transformed correlation coefficient
between the time series at the node i and node j.

B. Features
In order to compare the use of autoregression based

features with network based features, we consider four sets
of features which are extracted at node level, i.e. their dimen-
sion is determined by the number of nodes in the parcellation
n = 360. The four features are the lag-1 autoregression
coefficient a ∈ Rn, the positive strength p ∈ Rn, the negative
strength n ∈ Rn, and the clustering coefficient c ∈ Rn.

Autoregressive Feature: To follow [8] and for the purpose
of initial comparison, we consider here an AR model at lag
1. Inspection of the partial autocorrelation function suggests
that for many of the nodal level time series this model order
is optimal and for all the time series the lag one coefficient
is the majority contribution to the model. Figure 1 shows the
partial autocorrelation function for two regions of an example
subject. Figure 1a shows the pattern common to most regions
across subjects, with almost the full contribution coming
at lag 1. Figure 1b shows that for some regions, higher
order models would be required to adequately capture the
autocorrelation structure. It bears exploring in future work,

how to deal with time series that require a higher order model
as this would generate a heterogeneous number of features
per region. If the activity of node i at time t is given by xi,t
then the lag one AR model is given by xi,t = φixi,t�1+αi.
As the time series has been standardized the offset αi is
expected to be near zero and is ignored. The lag one AR
model was fit with Maximum Likelihood via the statsmodels
[25] AutoReg function and the resulting AR feature vector
a satisfies ai = φi.

Strength The functional connectivity network when cal-
culated is both signed and weighted. The edges of node i
are defined as wij ,∀j ∈ {1, . . . , n}. To preserve the sign
of the underlying network, the positive strength, p, and
the negative strength, n, are calculated for each node. For
node i the positive and negative strength are defined as
pi =

∑
j max(0, wij) and ni =

∑
j max(0,−wij).

Clustering Coefficient Clustering coefficient is a measure
which captures the local network structure by counting
the number of triangles a node is part of [26], [27]. The
clustering coefficient feature is calculated based on a variant
of the clustering coefficient that was specifically developed
for correlation networks as it takes into account both the sign
and the weight of the underlying edges [28], as implemented
in the Brain Connectivity Toolbox [29]. The weighted, signed
correlation coefficient satisfies:

ci =

∑
j,q(wj,iwi,qwj,q)∑

j 6=q |wj,iwi,q |

C. Classification Pipeline

First, the N = 200 samples were split 80 : 20 into
a train and test set using class labels to ensure roughly
equal distribution of patients and controls in each group.
The resulting features from the 160 subjects in the train set
were then standardized based on the train set, passed into
one of three dimensionality reduction steps, and then one
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Fig. 1: Partial Autocorrelation plot from two regions of
Subject 161. 1a shows the more common pattern across
regions, where a lag of 1 captures most of the autocorrelation.
1b shows that some regions would require multiple lags to
account for the autocorrelation in the region time series.

of the two classifiers was trained. 10-fold cross validation
(CV) was performed on the train set for hyperparameter
optimization of the various stages of the pipeline. Due to
the imbalanced nature of the dataset, the performance of
pipelines was evaluated based on balanced accuracy:

1

2

(
tp

tp+ fn
+

tn

tn+ fp

)
,

where tp is number of true positives, tn is number of true
negatives, fp is number of false positive, fn is number of
false negatives. A balanced accuracy of 0.5 is equivalent to
always selecting one class, which would occur if the classifier
only selected the majority class. The standard error of the
balanced accuracy on the test set was calculated via jackknife
resampling [30]. Unless otherwise noted, the algorithms are
as implemented in scikit-learn [31].

The three dimensionality reduction steps were to either
perform no dimensionality reduction, to perform Principal
Component Analysis (PCA), or to use univariate Mutual
Information (MI) to select informative features. Both the

number of components for PCA and the number of features
to retain based on MI were selected from {2, 4, 6, 8, 10}.

The two classifiers are a Support Vector Machine (SVM)
[32] and XGBoost (XGB) [33]. The support vector machine
had as potential parameters, a linear or a radial basis func-
tion kernel as well as an l2 regularization parameter from
{10, 1, 1

10 ,
1

100 ,
1

1000}. XGBoost was tuned based on the max
depth of trees, with possible parameters {1, 3, 5, 7}.

III. RESULTS

A comparison of the balanced accuracy on the test set for
the various features, classifiers, and dimensionality reduction
techniques is shown in Table I for the balanced accuracy
and Table II for the number of standard errors away from
a balanced accuracy of 0.5. Two comparisons were made
to assess the impact of these autoregressive features. First,
the four potential feature vectors were compared individually
to see how the classifier would perform using only that
feature. Then a comparison was made between performance
with combinations of features, including the autoregressive
features combined with the positive strength features as well
as the combination of the three network features and the
combination of all four features.

The classification performance of single features is shown
in the Autoregression, Positive Strength, Negative Strength,
and Clustering Coefficient columns of Table I. In all except
the PCA+XGB classification pipelines, network based fea-
tures provided the best performance. The individual network
feature that provided the best performance varied by pipeline,
with the positive strength providing the best balanced accu-
racy on 2 of 6 pipelines, negative strength providing best
balanced accuracy on 2 of 6, and clustering coefficient on 1.

In the single feature comparisons, the positive strength
outperformed the autoregressive features in 4 of 6 classifi-
cation pipelines considered, all except the PCA+XGB and
MI+XGB. To explore whether the combination of positive
strength and autoregressive features would allow for greater
performance, the two sets of features were input together
into the classification pipelines. As shown in the Auto+Pos
column of Table I, in all cases the balanced accuracy of
the combined features under-performed compared to the
individual features. While this behavior is to be expected in
the absence of any dimensionality reduction, as an increase
in the dimensionality of the input is likely to introduce more
noise and hence decrease the accuracy, it is surprising that
this holds even in the case of the PCA based pipelines.

The final comparison was between the classification per-
formance on the three network based features compared to
all four potential features. In this case, the inclusion of
autoregressive features improved performance as compared
to the three network features in 4 of 6 pipelines, all except
the SVC and MI+XGB. The PCA+SVC pipeline using all
features was the only case where not only did inclusion of
the autoregressive features improve performance but the per-
formance on combined features outperformed single features
and, as shown in Table II, to a level greater than 1 standard
error above choosing the majority class.
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It is worth noting, based on Table II, that many of the
classifiers achieve performance that is within ±1 standard
error of the chance level. This points to both the difficulty
of the underlying classification problem and the need for
further exploration of these classification pipelines before
considering the neuroscientific implications of these results.

IV. CONCLUSION

In this paper, we considered whether autoregressive fea-
tures would increase performance in a depression/anxiety
classification task. For most classification pipelines consid-
ered, network based features provide better classification
accuracy than autoregressive features, though in one pipeline
the combination of network and autoregressive features pro-
vided the best performance. This shows that the classifier
and dimensionality reduction step changes the impact of
incorporating autoregressive features. Fully understanding
the utility of using autoregressive features to study the brain
will require further exploration.
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