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Abstract— In neonatal intensive care units, respiratory traces
of premature infants developing late onset sepsis (LOS) may
also show episodes of apneas. However, since clinical patient
monitors often underdetect apneas, clinical experts are required
to investigate patients’ traces looking for these events. In this
work we present a method to optimize an existing algorithm
for central apnea (CA) detection and how we used it together
with human annotations to investigate the occurrence of CAs
preceding LOS.

The algorithm was optimized by using a previously-annotated
dataset consisting of 90 hours, extracted from 10 premature
infants. This allowed to double precision (19.7% vs 9.3%,
median values per patient) without affecting recall (90.5% vs
94.5%) compared to the original algorithm. This choice caused
the missed identification of just 1 additional CA (4 vs 3) in
the whole dataset. The optimized algorithm was then used to
annotate a second dataset consisting of 480 hours, extracted
from 10 premature infants diagnosed with LOS. Annotations
were corrected by two clinical experts.

A significantly higher number of CA annotations was found
in the 6 hours prior to sepsis onset (p-value < 0.05). The
use of the optimized algorithm followed by human annotations
proved to be a suitable, time-efficient method to annotate CAs
before sepsis in premature infants, enabling future use in large
datasets.

I. INTRODUCTION
Infants born very prematurely are characterized by an im-

mature respiratory system upon delivery. As a consequence,
these infants require hospitalization in neonatal intensive care
units (NICUs) [1], [2]. In particular, an immature respiratory
system may result in apneic events, or so called apnea of
prematurity [3]–[6]. Previous studies indicated an increase in
the number of apneas preceding sepsis, an infection which
is among the leading cause of premature death in NICUs
[7]–[10]. Therefore, apnea detection is important to adjust
the therapeutic strategy to prevent the occurrence of sepsis.
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The definition of apnea of prematurity has often been
debated in the past due to a lack of consensus among clinical
experts [2], [3], [11]. Apneas are currently most often defined
as cessations of breathing longer than 20 seconds, or longer
than 10 seconds accompanied by a bradycardia (heart rate ≤
100 beats/minute) and/or desaturation (SpO2 ≤ 80%) [2],
[4]. Apneas can be further classified into different types.
These include central apneas (CAs, absence of respiratory
effort due to a cessation of output from the central respiratory
centers), obstructive apneas (indicated by an obstruction in
the upper airway which causes inadequate respiratory efforts
to maintain ventilation) and mixed apneas (which include
characteristics of both previous groups) [3], [7], [12], [13].

Different algorithms have been developed for automatic
detection of apnea (e.g. in patient monitoring systems) [12],
[14]–[17]. However, since patient signals show high inter-
patient and intra-patient variability, such automated apnea
detection often fails, particularly in premature infants [12],
[17]. Research to improve algorithms for the detection of
apnea of prematurity is thus ongoing [15], [16]. For instance,
Lee and colleagues proposed an algorithm focusing primarily
on CA detection, with a key feature being the removal of the
cardiac signal from the chest impedance (CI) as that may
falsely be detected as respiration effort [12], [14], [17].

The aim of our study is to facilitate the time consuming
detection of CAs in data tracings of premature infants by
optimizing Lee’s detection algorithm [12], [14], [17] and
investigating its ability to detect CAs preceeding late-onset
sepsis (LOS), defined as sepsis with an onset after the first
72 hours of life [9], [10]. This algorithm was selected for the
use in this study due to its simplicity in the implementation
and since, compared to other algorithms that make use of
several additional vital signs to predict sepsis onset [18],
[19], it only uses the information included in CI and RR-
intervals (the latter is used to filter out the cardiac artifact
from CI) for the specific identification of CAs [12].

II. METHODS
A. Study Design

The improvement of CA detection was addressed in the
following two steps, as presented in Fig. 1(a). First, Lee’s
algorithm [12], [14], [17] was optimized using a first dataset
(training dataset), by comparing all central apnea-suspected
events (CASEs) returned by the algorithm with apnea an-
notations by two clinical experts. Second, the optimized
algorithm was applied in a second dataset (sepsis dataset),
containing data from premature infants that developed LOS.
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Fig. 1. (a) Workflow of the steps included in the current study and (b) steps
included in Lee’s algorithm for central apnea detection. Steps that led to the
optimized cutoff for the envelope function of Lee’s algorithm are represented
in blue in (a), whereas steps to evaluate the agreement for CA before sepsis
onset are represented in green. Steps that were optimized or added in this
work for Lee’s algorithm are highlighted in orange in (b). Abbreviations:
CI - chest impedance, CASE - central apnea suspected events, CA - central
apnea

Two clinical experts examined the vital signs during episodes
returned as CASEs by the algorithm, and annotated CAs.
CASEs as well as matching CAs were evaluated as a function
of the distance from sepsis onset.

As this study had a retrospective nature, a waiver was pro-
vided by the medical ethical committee in accordance with
the Dutch law on medical research with humans (WMO).

B. Study Datasets

Training dataset: This dataset included 10 premature in-
fants (gestational age 28.5 ± 1.6 weeks) undergoing contin-
uous cardiorespiratory monitoring in the NICU of Máxima
Medical Center (MMC, Veldhoven, The Netherlands). Pa-
tients’ characteristics are presented in Table I. A total of 90
hours of continuous data was extracted from these patients.
ECG, CI and oxygen saturation (SpO2) were collected
from NICU bedside monitors (GE Healthcare, models Solar
8000M and I), with both ECG and CI waveforms tracked
using three ECG leads with electrodes on both sides of the
heart. ECG was collected at 240 Hz, whereas the CI was
collected at 60 Hz. SpO2 was captured by PPG at 0.5 Hz.

Sepsis dataset: This dataset included 10 premature infants

TABLE I
CHARACTERISTICS FOR ALL PATIENTS INCLUDED IN BOTH DATASETS

Dataset Training Sepsis
Gestational Age (wk) 28.5 ± 1.6 27.9 ± 0.9

Postnatal Days 7.0 ± 7.0 10.2 ± 8.1
Birth Weight (g) 1041.5 ± 203.4 998.0 ± 215.9

Sex 7M, 3F 5M, 5F
Hours per Patient 9 48

Total Hours 90 480

(gestational age 27.9 ± 0.9 weeks) diagnosed with LOS. All
patients were part of a sepsis cohort consisting of patients
admitted to the NICU of MMC [8]. Patients’ characteristics
are presented in Table I. Their data was collected for all 48
hours prior to the onset of sepsis (when cultures, resuscitation
and antibiotics started), which allowed to extract a total
of 480 hours of data. ECG, CI and SpO2 were moni-
tored using the Philips IntelliVue MX800 patients’ monitors
(Philips Medical Systems, Böblingen, Germany), according
to clinical standard. ECG and CI were measured using three
ECG leads. ECG was collected at 250 Hz, whereas CI was
collected at 62.5 Hz. SpO2 was captured by PPG at 1 Hz.

C. Detection of central apnea-suspected events based on
Lee’s algorithm

Starting point of our work was the central apnea detection
algorithm described by Lee [12], [14], [17], that generated
a filtered respiration signal without cardiac artifacts. The
workflow including all the steps for this algorithm is pre-
sented in Fig. 1(b). For each RR-interval, the corresponding
CI was resampled to provide 30 equidistant samples. The
Fourier transform was computed and the frequency band at
the integer frequencies was filtered out to remove the cardiac
artifact. The signal resulting from inverse transformation was
then resampled at 60 Hz and filtered with a high-pass filter
with a cutoff frequency of 0.4 Hz, to remove low-frequency
artifacts. The amplitude of the resulting signal was finally
adjusted using an envelope function. This was computed by
applying a low-pass filter with a very low cutoff frequency at
the original CI. This was done to normalize the amplitude of
the resulting filtered respiration, so that results for different
patients could be compared. The value proposed by Lee et
al. for this cutoff was 0.0025 Hz. In this study, however,
we optimized its value to fit apnea annotations provided by
clinical experts from our group for the training dataset.

The standard deviation of the filtered respiration was
then computed every quarter of a second for centered 2
second intervals. Apnea probability was defined by applying
a two-parameter sigmoid function, resulting in a continuous
probability function. Events starting when apnea probability
exceeded 0.1 and ending when it decreased below this value
were detected. After removing events shorter than 2 seconds,
events shorter than 5 seconds were discarded unless they
were within 5 seconds of another event. Finally, all events
that were separated by less than 3 seconds were combined
into one single event, referred as CASEs in this work. Based
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on apnea definition from [2], [4], only CASEs longer than
10 seconds were considered for further human annotations
for CAs.

D. Central Apnea Annotations by Clinical Experts

Training dataset: This dataset had previously been an-
notated by two clinical experts from MMC. Annotations
were performed according to the definition of apnea of
prematurity, irrespectively of its type, provided in [2], [4].
The presence of apnea was evaluated using 3-minute win-
dows from this dataset, visualized by means of an in-
house annotation software developed using Matlab (The
MathWorks, Natick, USA). The software interface comprised
five physiological signals: ECG, SpO2, RR-intervals (derived
from ECG), CI and respiration rate (derived from CI). All
included physiological signals were presented using 3-minute
windows. An exception was the ECG signal, for which just
the last 10 seconds of the 3-minute windows were presented.
The annotators had the option in each window to generate
an apnea annotation by indicating its start and end on the
CI.

Sepsis dataset: For this dataset the optimized algorithm
was used to annotate CAs from CASEs. We developed
a new annotation software using Matlab to resemble the
representation returned by a patient monitor and to allow
for the identification of CAs. All the characteristics of this
software interface are presented in Fig. 2. Two clinical
experts provided annotations for apneic events with a central
origin using this annotation software. Information extracted
from multiple signals (e.g. CI, HR, SpO2) was delivered to
the clinical experts to provide accurate annotations.

Different annotation-options were discussed with the clin-
ical experts and the following labels were created: ‘central
apnea’ (a trace of flat CI signal following previously regular
fluctuating CI), ‘rejection’ (flat CI trace, however mixed with
large CI fluctuations) and ‘error’ (missing or corrupt signal).

E. Data analysis and Statistical analysis

Training dataset: All human annotations longer than 10
seconds were identified. Matching apnea annotations were
then defined in case the annotations by the different clin-
ical experts presented an overlap for more than 1 second
(60 samples). To determine the optimal settings for Lee’s
algorithm, different cutoffs for the envelope function were
evaluated to maximize the level of agreement with matching
apnea annotations. Furthermore, the two clinical experts who
annotated sepsis dataset were asked to annotate CAs among
all matching apnea annotations missed by the algorithm with
different cutoffs in the sepsis dataset. The optimal cutoff
was defined after clinical consensus considering a trade-off
among five parameters: the median counts of CASEs per
patient, median recall, median precision, median F1-score
(harmonic mean of recall and precision) as well as the total
count (sum considering all patients) of missed matching CAs.

Sepsis dataset: The total count of CASEs, matching CAs
agreed by both annotators and their median counts per patient
were investigated. The count of CASEs, CAs annotated

by either annotators (either CAs) and matching CAs was
performed using 2-hour windows and a step length of 1
hour. This solution was used to avoid considerations for
single hours, since consecutive hours often presented high
differences in the count of CASEs.

Then we investigated if the percentage of agreement (ratio
between matching CAs and CASEs computed per patient
using the same moving window) was influenced by the
time-distance from sepsis onset by computing its median
value over the different hours. A Cochran-Mantel-Haenszel
test was used to evaluate differences between the count of
matching CAs found in hours close to sepsis onset and the
count found in hours at further time-distance. Differently
from a Chi-Square test, this test allows for an analysis of
these counts stratified per patient albeit it assumes that the
difference in terms of odds ratio is the same across all
patients [20].

Data analyses were performed using Matlab for both
datasets whereas statistical analyses were performed using
R (R Core Team, Vienna, Austria). A p-value < 0.05 was
considered significant.

III. RESULTS

Training dataset: A total of 259 matching apnea an-
notations (i.e. annotations of the two different annotators
matching by at least one second) were found (median count
of matching apnea annotations per patient 21). When running
Lee’s algorithm on this dataset, the median count of CASEs
was much higher, depending on the cutoff for the envelope
function.

Since five parameters related to different cutoffs were an-
alyzed, these will be indicated following the order presented
in the method section, for an easier comprehension: median
count of CASEs per patient, median recall, median precision,
median F1-score and total count of missed matching CAs.
First, for the cutoff 0.0025, value suggested by Lee et al.
[12] and represented with an orange vertical line in Fig.
3, a median count of 147 CASEs per patient was found
(238/259 identified matching apnea annotations), together
with a median recall of 94.5%, a median precision of 9.3%,
a median F1-score of 16.9% and 3 missed matching CAs
in total for all patients. For the cutoff 0.0030, represented
with a red vertical line in Fig. 3, the following parameters
were extracted: a median count of 144 CASEs per patient
(240/259 identified matching apnea annotations), a median
recall of 95.5%, a median precision of 9.6%, a median F1-
score of 17.4% and 2 missed matching CAs in total. Despite
this cutoff showed the maximum median recall, being able
to detect most of matching apnea annotations, it also showed
a very low precision, structurally detecting a high number of
CASEs that were not marked as apneas by the annotators.

To reduce false apnea detection, we aimed for a true
to false ratio for CASEs equal to 1:5 (precision = 0.2)
and identified 0.0005 as optimal cutoff. For this cutoff,
represented with a green vertical line in Fig. 3, the following
parameters were extracted: a median count of 75 CASEs
per patient (222/259 identified matching apnea annotations),
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Fig. 2. Representation of the software annotation used to provide clinical experts’ annotations for sepsis dataset based on central apnea suspected events
(CASEs) provided by Lee’s algorithm. This software includes 30-second representations for CI, filtered respiration, apnea probability computed using Lee’s
algorithm. RR-intervals, SpO2 and also CI are represented using 7-minute windows. The starting and ending SpO2 values registered for each annotation
from Lee’s algorithm as well as the minimum recorded value found within the annotation are indicated in a grey string.
The current CASE provided by Lee’s algorithm is represented in red and is superimposed to all the 7-minute windows. The light blue area is instead used
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‘central apnea’, ‘reject’ and ‘error’. Whenever a choice is made, this is indicated after the string ‘label’.
Information about the number of the current CASE as well as the time reference to the whole 48 hours for the selected patients are indicated in gray.
‘Save labels’ allow the annotator to save all previous annotations

a median recall of 90.5%, a median precision of 19.7%,
a median F1-score of 30.8% and 4 missed matching CAs
in total. Considering the significant reduction in the count
of CASEs returned by the algorithm (improved precision)
at the cost of losing just 1 additional matching CA, this
cutoff was found to be suitable to annotate large datasets.
Despite the median F1-score computed with a cutoff equal
to 0.0005 showed a lower value compared to its maximum,
as this metric penalizes precision and recall disagreeing with
each other too much [21], [22], this value was found to be
almost doubled compared to the F1-score computed using
the original cutoff, proving to be a suitable choice for the
use with sepsis dataset.

Sepsis dataset: A total of 4773 CASEs were detected by
the optimized algorithm (median count per patient 537). A
total of 772 matching CAs (i.e. CAs agreed on by both
annotators) were detected (median count per patient 47).

Time dependencies for the annotations were evaluated by
considering the median count of CASEs, either CAs and
matching CAs per 2-hour windows, as shown in Fig. 4. A
median count of 15 CASEs per patient per 2-hour windows
was found, with higher counts located in proximity to sepsis
onset (last 6 hours). The median count of either CAs and
matching CAs also showed higher values closer to sepsis.
Percentage of agreement (ratio between matching CAs and
CASEs computed per patient) showed higher values in the
6 hours close to sepsis onset as well as very low values in
the preceding hours (10-7 hours before sepsis onset). The
counts of matching CAs for the last 6 hours prior to sepsis
onset were found to be statistically higher than all previous

hours by using the Cochran-Mantel-Haenszel test (p-value <
0.05).

IV. DISCUSSION

In this study we optimized an automatic algorithm to fa-
cilitate human annotations for CAs in a dataset of premature
infants and used it to detect CAs and to evaluate agreement
for CAs preceeding LOS. This study proposes a method to
tune Lee’s algorithm for CA detection for the use in diverse
and large datasets of premature infants.

Algorithm optimization was possible by establishing an
optimal cutoff for the envelope function (0.0005). This
choice provided only a slight loss of recall (90.5% vs 94.5%,
median values per patient) but resulted in an improved
precision (19.7% vs 9.3%) and F1-score (30.8% vs. 16.9%).
The optimized algorithm returned therefore less than half
CASEs per patient for further clinical annotations compared
to when the original cutoff was used, significantly reducing
the time needed by clinical experts to annotate a dataset.
Since availability of clinical experts is always limited, we
considered the increase of precision a valuable improvement
for the algorithm. This result was obtained at the price
of missing just one additional matching CA in the whole
training dataset (4 vs 3).

A software annotation tool was created in close contact
with clinicians to allow for the detection of CAs among all
CASEs. The solution proposed in this work considers both
the need to present information in a similar way to the one
commonly shown by patient monitors and to include relevant
information for the detection of CAs.
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Fig. 3. (a) Median count of central apnea-suspected events (CASEs) and
(b) median precision, recall and F1-score per patient provided by comparing
CASEs with matching apnea annotations (provided by clinical experts) from
the training dataset. Both figures are generated considering different cutoffs
for the envelope function in Lee’s algorithm. The optimal cutoff (0.0005)
selected for the analysis in sespis dataset is indicated with a green line. The
original choice selected by Lee indicated is with an orange line whereas the
cutoff with the highest recall is indicated is with a red line

The influence of the time to sepsis on CASEs and CAs
was then evaluated. The optimized algorithm returned a
higher count of CASEs per 2-hour windows in the last 6
hours prior to sepsis onset. The count of matching CAs
in the last 6 hours was found to be statistically higher
when compared to all previous hours (p-value < 0.05). This
difference was also reflected by the percentage of agreement,
a result which could indicate that apnea characteristics may
be more pronounced close to sepsis. Previous works showed
that sepsis is preceded by an increase in the number of
apneic periods [7]–[9]. A higher agreement for CAs in
these hours can therefore be motivated by the association
between sepsis and apneas. Interestingly, the effect of sepsis
is already visible 6 hours before its onset: future studies may
investigate if the presence of a higher number of CAs may
be relevant for the prediction of sepsis onset while using
different machine learning algorithms.

This study has limitations. First, only the cutoff parameter
of the envelope function of Lee’s algorithm was optimized.
The possibility of using different functions from the two-
parameter sigmoid function to compute apnea probability
could be further examined. Second, in this work we only fo-
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Fig. 4. (a) Median count of central apnea-suspected events (CASEs)
(divided by 2, to allow for scale comparison with the following measures)
provided by Lee’s algorithm, central apneas (CAs) annotated by either
annotators (either CAs) and agreed on (matching CAs) and (b) median
percentage agreement computed per patient as ratio between matching CAs
and CASEs. All measures were computed using 2-hour windows and a step
length of 1 hour

cused on CA annotations but both annotators clearly reported
that ‘rejected’ CASEs often would have been categorized as
mixed or obstructive apneas. An evaluation of the precision
and recall for this type of events could provide additional
value to the optimized algorithm.

V. CONCLUSIONS

Annotation of CAs in a large dataset of premature infants
is feasible by using the optimized algorithm, which returns
CASEs for further human annotations. This optimized al-
gorithm proved to be reliable for annotating CAs (very few
CAs missed) while also reducing the time needed by clinical
experts to annotate a dataset. The identification of high
counts of CAs seems a promising tool to provide additional
useful information to help clinical experts predict the onset
of sepsis in premature infants.
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