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Abstract— Colorectal cancer has become the second leading
cause of cancer-related death, attracting considerable interest
for automatic polyp segmentation in polyp screening system.
Accurate segmentation of polyps from colonoscopy is a
challenging task as the polyps diverse in color, size and
texture while the boundary between polyp and background
is sometimes ambiguous. We propose a novel alternative
prediction refinement network (APRNet) to more accurately
segment polyps. Based on the UNet architecture, our APRNet
aims at exploiting all-level features by alternatively leveraging
features from encoder and decoder branch. Specifically, a
series of prediction residual refinement modules (PRR) learn
the residual and progressively refine the segmentation at
various resolution. The proposed APRNet is evaluated on
two benchmark datasets and achieves new state-of-the-art
performance with a dice of 91.33% and an accuracy of 97.31%
on the Kvasir-SEG dataset, and a dice of 86.33% and an
accuracy of 97.12% on the EndoScene dataset.

Clinical relevance— This work proposes an automatic and
accurate polyp segmentation algorithm that achieves new state-
of-the-art performance, which can potentially act as an observer
pointing out polyps in colonoscopy procedure.

I. INTRODUCTION

Colorectal cancer is the second highest prevalent cause of
cancer-related death around the globe with a death toll of
915, 880 in 2020 [1]. Early-stage diagnosis and therapeutic
treatment can greatly increase the likelihood of survival ,
where colonoscopy is the preferred method for analyzing
inside the colon and removing colorectal polyps. To this end,
automatic and accurate segmentation of polyps has become
an active field of research for the past few decades.

In recent years, deep learning technologies have promoted
automatic polyp segmentation, similar to other medical imag-
ing applications. The fully convolutional neural networks
(FCNs) [2][3] replaced the fully connected layers of the
general convolutional neural networks (CNNs) with convolu-
tional ones to form segmentation by pixel-wise classification,
where skip connections could be adopted to combine multi-
scale features. Brandao et al. [3] adopted the FCN with
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a pre-trained VGG model to identify and segment polyps
from colonoscopy images. Later, UNet [4] was proposed and
UNet-based architectures [5][6][7] became very popular in
medical segmentation tasks where the expansive path is more
or less symmetric to the contracting path yielding a U-shaped
architecture and channel-wise concatenation is adopted for
skip connect operation instead of summation in FCNs. Fang
et al. [6] incorporated a sharing encoder branch and two
decoder branches with upward concatenation and selective
kernel module to fuse and learn multi-level features.

Although these networks have achieved high performance,
there still exists some defects that the reconstructed mask
was generated considering only the final semantic level.
Moreover, deep semantic features from the decoder sub-
network and shallow low-level features from the encoder
sub-network were directly combined with skip connections,
during which the semantic gap of features might cause
ineffective recovery of fine details. Since different scales
of reconstructed feature maps can be generated at various
levels, it is expected that more efficient segmentation can be
achieved by carefully exploiting multi-scale features.

In this paper, we propose the alternative prediction re-
finement network (APRNet) to more accurately segment the
polyps by leveraging advantages of the residual learning
and information encoded in multiple layers. Specifically, our
APRNet is based on the UNet framework and the intent
is to progressively refine and update the prediction map at
each residual refinement step by alternatively taking in the
semantic coarse-grained features from the decoder branch
and the shallow fine-grained features from the encoder
branch. To achieve this, we first design a global prediction
generation (GPG) module to give an initial prediction seed
map. Then we adopt a series of prediction residual refinement
(PRR) modules that take in features from encoder-decoder
architecture concatenated with the previous prediction as
input to learn the residual and outputs a new prediction map
that enhances polyp details and suppresses the background.
Finally, we take the prediction map from the last PRR
module as the output. The whole network is trained in an
end-to-end manner.

To summarize, the contributions of this work mainly
include: (1) An alternative prediction refinement network
(APRNet) is proposed to progressively refine the segmenta-
tion by leveraging the features encoded in multiple layers of
the U-shaped architecture. (2) A GPG module and a series of
PRR modules are elaborated to generate a initial prediction
seed and to effectively use multi-level features, respectively.
(3) The proposed APRNet achieves a new state-of-the-art
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performance on two benchmark datasets.

II. METHODS

The architecture of our APRNet is shown in Fig. 1,
which can be regarded as an enhanced and deformed UNet.
The encoder and decoder branch have five blocks each,
where ResNet34 [9] is adopted as encoder and each decoder
block consists of two Conv-BN-ReLu combinations and an
upsample operation.

The global prediction generation (GPG) module is placed
on top of the encoder branch, which captures the global
context information and generates an initial prediction seed
map. Then a series of prediction residual refinement (PRR)
modules are utilized to learn the residual from the previous
prediction map concatenated with encoder (or decoder) fea-
tures, which is then used to refine and update the predicted
segmentation. The previous prediction is upsampled for each
PRR module exploiting features from the decoder branch.
Meanwhile, the refined prediction map from each PRR
module is supervised by the down-sampled ground truth
with corresponding resolutions respectively. The prediction
map generated by the last PRR module is taken as the final
segmentation output of our network.

A. Global Prediction Generation Module (GPG)

We borrow the idea from atrous spatial pyramid pooling
[10] and squeeze and excitation network [11] to build our
GPG module, which is put on top of the encoder branch
capturing global context to give an initial prediction map.
Later, the initial prediction map is forwarded to the consec-
utive prediction residual refinement modules with features
taken from decoder and encoder branches alternatively.

As shown in Fig. 2, GPG contains four atrous spatial
pyramid pooling branches with different dilation rates and
one image-level pooling branch to capture multi-scale infor-
mation. Meanwhile, we incorporate a squeeze and excitation
block consisting of global average pooling layer and two
fully connected layers with activation to adaptively extract
channel-wise features. Finally, a prediction out block with
two convolutional layers and a dropout layer is adopted to
generate the initial prediction map.

B. Prediction Residual Refinement Module (PRR)

Inspired by deep residual learning [9][12], we alternatively
takes the features from decoder and encoder branch to learn
the difference between the previous prediction map and the
ground truth and then progressively refine and update the
segmentation results.

As shown in Fig. 3, a PRR module is defined as:

Pj+1 = Pj ⊕ Φj(Cat(Pj , Fj)) (1)

where the take-in feature Fj is set as feature from decoder
and encoder branch alternatively, which is then the con-
catenated (Cat) with the previous prediction map Pj from
module PRRj−1. Φj denotes function at current module
consisting of three convolutional layers to learn the jth

residual. And ⊕ means element-wise summation.

C. Deep Supervision Loss (DSLoss)

As shown in Fig. 1, our network can output prediction
maps at different resolutions. During the training process,
we apply deep supervision mechanism to impose a deep
supervision loss. We compute the combined Binary Cross
Entropy (BCE) loss and Dice loss between each refined
prediction map from each PRR module and down-sampled
ground truth (supervision). Thus, the total deep supervision
loss (DSLoss) is formulated as:

LDS = L(GT,Pred10) + λ

9∑
j=2

L(GTj , P redj) (2)

where L is defined as L = LBCE + LDice, GT and GTj
denotes ground truth and down-sampled ground truth, while
Predj=2−10 denotes refined prediction map from j − 1th

PRR module, repectively. λ is set as 0.25.

III. EXPERIMENTAL RESULTS

A. Datasets and Evaluation Metrics

We evaluate our proposed method on two benchmark
colonoscopy image datasets, including Kvasir-SEG [13] with
1000 polyp images and EndoScene [14] with 912 images
(612 images from CVC-ClinicDB and 300 images from
CVC-ColonDB). For fair comparison, we refer to the settings
of training set, validation set and test set as in previous
literature[7], and the experiments of state-of-the-art methods
are also conducted with same data settings. Specifically,
for the first dataset Kvasir-SEG, we resize all images to
320×320 and randomly use 60% of the dataset as training
set, 20% as validation set and 20% as test set. And for the
second dataset Endoscene, we resize images to 288×384 and
adopt the default setting with 574 images as training set, 183
images as validation set and 182 images as test set.

To quantitatively evaluate the segmentation performance
of our proposed APRNet, we adopt eight metrics imple-
mented in [6] for fair comparison, Recall (Rec), Specificity
(Spec), Precision (Prec), Dice Score (Dice), Intersection-
over-Union for Polyp (IoUP), Intersection-over-Union for
Background (IoUB), Mean Intersection-over-Union (mIoU)
and Accuracy (Acc), among which Dice and Mean IoU are
the preferred metrics suggested by Kvasir-SEG dataset.

B. Implementation Details

We use Pytorch to implement our algorithm. The batch
size is set to be 4, the learning rate is initialized to be 0.001
and decreased by a factor ( epoch

nepoch=150 )0.9. The SGD opti-
mizer is used with a weight decay of 10−5 and momentum
of 0.9. In training stage, data augmentation including random
horizontal and vertical flips, shift and rotation is adopted to
enlarge the training set as in [6].

C. Comparison with the State-of-the-arts

As listed in Table I, we compare our APRNet with five
state-of-the-art algorithms: FCN [3], UNet [4], UNet++ [5],
SFANet [6] and PraNet [8]. Meanwhile, some visualization
results are shown in Fig. 4. As can be concluded from
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Fig. 1. Overview of our proposed APRNet. (Color figure online)

Fig. 2. Global Prediction Generation Module (GPG). (Color figure online)

both the quantitative and qualitative results, our APRNet
consistently achieves the best segmentation performance on
both benchmark dataset, showing effectiveness and also
robustness of the proposed algorithm. Our APRNet achieves
a mean Dice of 91.33%, a mean IoU of 91.23% and an
accuracy of 97.32% on the Kvasir-SEG dataset, and a mean
Dice of 86.33%, a mean IoU of 88.23% and an accuracy of

Fig. 3. Prediction Residual Refinement Module (PRR). (Color figure
online)

97.12% on the EndoScene dataset.

D. Ablation Study

The ablation experiments are done on the Kvasir-SEG
dataset, and performance of our APRNet without each of
proposed modules and deep supervision is also shown in
Table I. Specifically, we replace the GPG module with the

TABLE I
COMPARISON WITH OTHER STATE-OF-THE-ART ALGORITHMS AND ABLATION STUDY

Dataset Method Rec Spec Prec Dicea IoUP IoUB mIoUa Acc

Kvasir-SEG

FCN8s (EMBC’18) [3] 90.17 98.18 89.74 88.15 80.94 95.62 88.28 96.56
UNet (MICCAI’15) [4] 87.91 97.30 87.27 84.70 76.77 94.26 85.52 95.33
UNet++ (TMI’19) [5] 84.33 98.31 89.27 83.49 76.21 94.48 85.34 95.48

SFANet (MICCAI’19) [6] 91.80 97.04 87.01 87.15 80.44 94.95 87.70 95.96
PraNet (MICCAI’20) [8] 89.56 99.02 93.04 90.40 84.73 96.40 90.56 97.10

APRNet (Ours) 93.06 98.32 91.86 91.33 85.91 96.55 91.23 97.31
APRNet w/o PRR 89.71 96.77 86.97 85.38 77.34 94.63 85.99 95.69
APRNet w/o GPG 92.13 98.10 91.26 89.95 84.39 95.98 90.19 96.77

APRNet w/o DSLoss 92.67 99.12 90.47 90.01 84.11 96.22 90.17 97.00

EndoScene

FCN8s (EMBC’18) [3] 82.38 99.22 89.23 81.47 73.38 96.22 84.80 96.49
UNet (MICCAI’15) [4] 68.44 98.59 92.61 72.19 63.72 95.20 79.46 95.44
UNet++ (TMI’19) [5] 61.15 99.14 85.10 62.75 53.98 94.51 74.24 94.73

SFANet (MICCAI’19) [6] 85.51 98.94 86.81 82.94 75.00 96.34 85.66 96.61
PraNet (MICCAI’20) [8] 82.15 99.29 91.51 82.78 75.82 96.38 86.10 96.60

APRNet (Ours) 87.40 99.34 91.34 86.33 79.58 96.87 88.23 97.12
aDice and mIoU are the preferred evaluation metrics suggested by the Kvasir dataset.
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Fig. 4. Visualization of segmentation results on some samples. 1st column: input images. 2nd column to 7th column: segmentation results of state-of-
the-art methods and results of our APRNet, respectively. 8th column: ground truths. Our proposed model efficiently learns to segment the polyps with
more precise area and boundary, compared with other methods. (Color figure online)

prediction out block which contains two convolutional layers
(see Fig. 2) to validate the effectiveness of GPG module.
As for PRR modules, we directly use the original U-shaped
encoder-decoder framework with same settings as APRNet
and take output from the last decoder as final segmentation.
Finally, the APRNet without deep supervision refers to a
model adopting a BCEDice Loss supervising only the output
segmentation map. As indicated from the results, all three
developed parts help improve the segmentation performance,
of which the series of PRR modules contributes most.

IV. CONCLUSIONS

In this paper, a novel UNet based segmentation algorithm,
APRNet, is introduced to accurately segment polyps from
colonoscopy images. Taking advantages of deep residual
learning, we first generate an initial prediction seed with
a proposed GPG module and then progressively refine
and reproduce the prediction map via alternatively lever-
aging features from encoder and decoder branches of the
UNet. Extensive experiments have demonstrated that our
proposed APRNet outperforms state-of-the-art algorithms on
two benchmark datasets.
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