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Abstract— Thyroid cancer has a high prevalence all over the
world. Accurate thyroid nodule diagnosis can lead to effective
treatment and decrease the mortality rate. Ultrasound imaging
is a safe, portable, and inexpensive tool for thyroid nodule
monitoring. However, the widespread use of ultrasound has
also resulted in over-diagnosis and over-treatment of nodules.
There is also large variability in the assessment and characteri-
zation of nodules. Thyroid nodule classification requires precise
delineation of the nodule boundary which is tedious and time-
consuming. Automatic segmentation of nodule boundaries is
highly desirable, however, it is challenging due to the wide
range of nodule appearances, shapes, and sizes. In this study,
we propose an end-to-end pipeline for nodule segmentation
and classification. A residual dilated UNet (resDUnet) model is
proposed for nodule segmentation. The output of resDUnet is
fed to two rule-based classifiers to categorize the composition
and echogenicity of the segmented nodule. We evaluate our
segmentation method on a large dataset of 352 ultrasound
images reviewed by a certified radiologist. When compared
with ground-truth, resDUnet gives a higher Dice score than the
standard UNet (82% vs. 81%). Our method requires minimal
user interaction and it is robust to reasonable variations in
the user-specified region-of-interest. We expect the proposed
method to reduce variability in thyroid nodule assessment which
results in more efficient and cost-effective monitoring of thyroid
cancer.

I. INTRODUCTION

There has been a substantial increase in the number of
thyroid cancer cases reported in the United States over the
past decades [1], [2]. A total of 2170 deaths were attributed
to thyroid cancer in 2019 [2]. Fortunately, almost 90% of
nodules seen in the thyroid are benign and are unlikely to
grow in size and become cancerous, even if they grow [3].
Nodules larger than 1 cm are considered suspicious based
on their echogenic texture and they are recommended for
biopsy via fine-needle aspiration (FNA). However, FNA is
highly invasive, costly, and sometimes inconclusive. When
combined with the low specificity of physical examinations,
this results in over-diagnosis and over-treatment of thyroid
nodules, which is a major financial burden on healthcare
systems. Ultrasound imaging is the primary diagnostic tool
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Fig. 1. Examples of thyroid nodules as seen in ultrasound. Note that the
size, echogenicity and composition varies based on type of nodule.

for thyroid examination, but it is subject to high variability in
interpretation. To standardize the reporting and characteriza-
tion of thyroid nodules, the American College of Radiology
introduced the Thyroid Imaging Reporting and Data System
(TIRADS) [4], which is based on five characteristics of the
thyroid nodule including echogenicity, composition, shape,
margin and echogenic foci. There are various modifications
of the TIRADS to reduce the variability in reporting nodules.
However, the fundamental limitation is that individual char-
acteristics of the nodule are determined manually making the
assessment subjective.

A key aspect of thyroid nodule assessment is precise
segmentation of the boundary of the nodule. As shown in
Figure 1, the pixel intensity distribution inside the nodules
varies considerably depending on the nodule composition.
Moreover, nodules with unclear boundaries, and ultrasound
images characteristics, especially heavy noise and artifacts,
make the nodule segmentation task more challenging. Hence,
manual segmentation of thyroid nodules is usually time-
consuming and tedious. To address these issues, a computer-
aided diagnosis (CAD) system is needed to automatically
segment nodules, eliminate this variability, and provide fast
and reliable risk stratification of the segmented nodules.
There are some feature-based and conventional approaches
proposed for thyroid and nodule segmentation. Koundal et
al. uses spatial information with neutrosophic clustering and
level-sets for segmentation of thyroid nodules [5]. A similar
approach with neutrosophic speckle reduction is proposed in
[6]. Illanes et al. uses wavelet decomposition and K-means
clustering to identify thyroid tissue patches in ultrasound
images [7]. In similar lines, patch-based and region-of-
interest (ROI) based approaches have also been used to
classify thyroid nodules [8][9].

Motivated by the success of deep learning in image seg-
mentation tasks, recent approaches focus on deep models for
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nodule and thyroid segmentation. Ma et al. proposes a deep
multi-layer convolutional neural network (CNN) with 15
convolutional layers and 2 pooling layers for thyroid nodule
segmentation. An 8 layer fully convolutional network (FCN)
is proposed in [10]. Zhou et al. uses the UNet architecture
[11] to interactively segment thyroid nodules based on a user-
defined ROI [12]. Poudal et al. developed a 3D UNet model
[13] for thyroid segmentation which outperformed level-sets,
graph cut, and a pixel-based classifier in terms of Dice score
and Hausdorff distance [14]. A major modification to the
UNet model proposed recently is UNet++ [15] which is
a deeply supervised encoder-decoder network where skip
connections of the standard UNet are replaced with nested
dense layers. This would reduce the semantic gap between
features extracted from corresponding layers of the encoder
and decoder paths of the network.

In this paper, we propose adding residual connections to
convolution blocks of the UNet model and also embedding
dilated convolution layers within the architecture. Residual
structure improves learning ability and accelerates conver-
gence [16]. The additional convolution layers generate richer
multi-scale features to map the encoding and decoding paths
of the UNet. We compare our network with the standard
UNet and UNet++.

II. METHODOLOGY

An overview of the proposed CAD system is shown in
Figure 2. The input to the CAD system is a 2D ultrasound
image. The network generates a segmentation mask for the
nodule based on a user-defined ROI (indicated by the red
rectangular box in Figure 2). The network is able to delineate
nodules in transverse (TRX) and sagittal (SAG) thyroid
ultrasound scans. Using the segmentation mask and pixel
information in the original image, two rule-based classifiers
are developed to categorize the echogenicity and composition
of the nodule to estimate the risk. TIRADS classification
defines composition categories as cystic, spongiform, mixed
solid cystic, and solid and, echogenicity categories as ane-
choic, hyperechoic, isoechoic, hypoechoic, Very hypoechoic.
The composition classifier consists of five different image
processing based stages including (1) morphological erosion
to remove peripheral calcification, (2) hard thresholding to
find solid percentage, (3) adaptive histogram equalization for
image enhancement, (4) Isodata thresholding to find dark
regions, and (5) morphological closing to find the number of
liquid blobs. Results of these stages are compared to the
predefined clinical rules and the final decision about the
composition category is made. The echogenicity classifier
is composed of the following stages: (1) using composition
stages to find solid part of the nodule, (2) morphological
dilation and erosion to find both the area surrounding the
nodule and the area inside the nodule (exclude the nodule
boundary), (3) adaptive thresholding to remove very dark
and very bright pixels from both areas, (4) calculating the
average of brightness for the remained pixels of each area
and comparing them with each other. The decision about

Fig. 2. Overview of the proposed CAD system with a deep learning based
segmentation of the nodule boundary and rule-based classifiers.

echogenicity is made based on the clinical rules and the
comparison result.

A. Network Architecture

The UNet architecture uses a series of convolution and
max pooling operations in the encoding path to learning
image features. The spatial and contextual information of
these features is reconstructed in the decoding path through
transposed convolutions and skip connections from the en-
coder. The newly proposed resDUnet improves segmenta-
tion results by adding residual shortcut connections [16] in
building blocks and embedding dilated convolution layers
in the bottleneck part of the network (Figure 3). Residual
connections have the ability to eliminate the vanishing and
exploding gradient problem, which leads to more consistent
training of the neural network [16]. Dilated convolution
layers apply 3 × 3 convolution with different dilation rates,
which is defined as:

(F ∗l k)(p) =
∑

s+lt=p

F (s)k(t). (1)

where ∗l is the dilated convolution operator. F and k are
discrete function and discrete 3x3 filter, respectively. Consid-
ering that dilated convolutions increase receptive field while
keeping the resolution, and different dilation rates apply
different receptive fields, more robust features are extracted
in different scales.

B. Network Training

We leveraged Keras with Tensorflow backend as a deep
learning framework in Python programming language for
the design and implementation of resDUnet. We trained the
network with Dice coefficient based loss function and Adam
optimizer [17] with an initial learning rate of 10−5. Keras
EarlyStopping strategy was used to avoid over-fitting. The
maximum epoch number has been set to 100. Both input
and output size for the model are 128 × 128 × 1. The total
number of trainable parameters of resDUnet is 1741833. Our
model has been trained on GeForce GTX 1080 GPU with
12GB memory.

III. EXPERIMENTAL RESULTS

A. Ultrasound Image Dataset

The ultrasound image data used for training and testing
models were obtained retrospectively from our data collec-
tion center. This study was approved by the health research
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Fig. 3. Schematic architecture of the proposed resDUnet.

ethics board of the University of Alberta. The data comprises
SAG and TRX cine-sweeps acquired using Philips i22 and
GE Logiq ultrasound scanners.

The training set includes 4266 2D image slices containing
thyroid nodules which have been acquired from 63 SAG and
TRX sweeps of 41 patients. The test set includes 352 images
from 141 patients. The boundary of each nodule was man-
ually delineated by medical experts. Using the segmentation
masks, we generated ROIs around nodules which were used
as the input to the network. In order to account for variability
in the manually selected ROI, we randomly changed the
centroid and dimensions of the ROI which generated an
augmented dataset of 12798 images. Moreover, each nodule
was categorized based on echogenicity and composition by
a medical expert.

B. Qualitative and Quantitative Analysis

To evaluate the performance of the proposed resDUnet,
we compare our model with standard UNet [11] and one of
its variants, UNet++ [15]. As we can see in Table. I, the
average Dice score of resDUNet is 82% on the entire test
set, which is higher than UNet and UNet++. To better realize
the performance of resDUnet on different sizes of nodules,
we categorize nodules into 3 subgroups (greater than 50k
pixels, as large, 10k–50k pixels, as a medium, and less than
10k pixels, as small nodules) and compare the average Dice
score in each subgroup.

Figure 4 shows the qualitative comparison of resDUnet
with UNet and UNet++. As we can see, resDUnet seg-
mentation result is closer to the ground-truth than the two
other networks. Moreover, it is able to delineate the nodule
even with a relatively large ROI. Boxplot diagram of the
Dice scores has been presented in Figure 5. We also use
two rule-based classifiers to categorize the composition and
echogenicity of segmented nodules. The agreement of these
categorizations with ground-truth assessments of radiolo-
gists, in terms of Kappa score, is 0.68 for echogenicity and
0.51 for composition, which are relatively high scores.

(a) UNet (b) UNet++ (c) Proposed resDUNet

Fig. 4. Qualitative comparison of ground-truth (green) and segmentation
results (blue) for different methods. ROI has shown by a red rectangle.

TABLE I
COMPARISONS AGAINST UNET AND UNET++.

Model
Large >50k pixels Medium 10k-50k pixels Small <10k pixels Total

51 images 150 images 151 images 352 images
Dice Dice Dice Dice

UNet [11] 90% 87% 73% 81%
UNet++[15] 91% 87% 71% 80%
resDUnet 91% 87% 74% 82%

IV. DISCUSSION

Earlier feature-based thyroid and nodule segmentation
approaches generally make implicit assumptions about the
data. In contrast, our proposed method is data-driven and
does not make any prior assumptions about the data.

Regarding nodule classification, instead of directly clas-
sifying nodules based on their ROIs, we develop a more
explainable workflow by preliminary segmenting nodule
boundaries. We compared the segmentation results obtained
from standard UNet, UNet++, and resDUNet models on our
dataset. Our resDUnet segmentation results were closest to
the ground-truth, which indicates that extracted features in
resDUnet are complementary to each other. The improve-
ment in the Dice score was most significant in small nodules
(as shown in Figure 5), which potentially increases the sensi-
tivity in screening. We also designed a rule-based engine that
predicts the composition and echogenicity of the segmented
nodule based on the pixel intensities within the segmentation
mask and surrounding area. The predicted values of compo-
sition and echogenicity showed high agreements with expert
assessment (Kappa score is 0.68 for echogenicity and 0.51
for composition) considering the agreement between experts,
which ranges between (0.45 − 0.57) for echogenicity and
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Fig. 5. Boxplot of Dice scores of UNet, UNet++ and resDUnet segmen-
tation algorithms on three categories of nodules (small, medium and large),
and for the entire test set.

(0.59−0.64) for composition [18], [19]. Agreement between
non-expert readers is less for both echogenicity (0.34−0.46)
and composition (0.18− 0.36) [18], [19]. The agreement of
our CAD system with an expert radiologist is higher than
the range of agreement between experts for echogenicity and
close to the experts agreement in composition.

The limitation of the proposed method is that it requires
initial user interaction for defining prior ROI. Hence, for
future work, we will develop a fully automated CAD system
to detect thyroid nodules first and then segment these nodules
without the need for user-defined ROIs. There is also scope
for improvement in the segmentation of large nodules which
have heterogeneous textures. As an extension of the current
work, we also plan to collect more data in each nodule size
category and develop a multi-head ensemble network to inte-
grate different nodule sizes and refine the final segmentation
mask.

V. CONCLUSIONS

In this paper, we developed a CAD system for analyzing
and categorizing thyroid nodules from cine-sweeps acquired
in TRX and SAG orientations. The proposed network created
more accurate segmentation masks, in terms of Dice score
than UNet and UNet++. We also proposed two rule-based
classifiers to categorize nodules based on their segmentation
masks. The results demonstrated high agreements with cate-
gorizations made by radiologists. The proposed CAD system
is expected to reduce inter-observer variability, may result in
an overall improvement in thyroid cancer management.
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