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Abstract— Accurate segmentation of cardiac chambers
is helpful for the diagnosis of Congenital Heart Disease
(CHD) in fetal echocardiography. Previous studies mainly
focused on single cardiac chamber segmentation, which
cannot provide sufficient information for the cardiologists.
In this paper, we present an instance segmentation approach
capable of segmenting four cardiac chambers accurately and
simultaneously. A novel object proposal recovery strategy
is further deployed to retrieve possible missing objects. To
alleviate the shortage of medical data and further improve
the segmentation performance, we utilize a rotation and
distortion method for data augmentation. Experiments on a
fetal echocardiography dataset of 319 fetuses demonstrate
that the proposed approach can achieve superior performance
according to common-used evaluation metrics.

Clinical relevance—This can be used to help the cardiologists
to better analyze the structure and function of the fetal heart.

I. INTRODUCTION

Congenital heart disease (CHD) is one or more abnormal-
ities in the heart’s structure and function present at birth. The
analysis of the fetal echocardiography images will be useful
for cardiologists to measure the fetal heart’s size and function
and make a heart disease diagnosis [1]. The segmentation of
four cardiac chambers can be used as auxiliary information
to diagnose several kinds of CHD.

In the past few years, there have been many studies
on cardiac chambers segmentation in echocardiography [2],
[3], [4]. However, several studies have focused on single
ventricular segmentation, such as the left ventricle (LV) [2],
the left atrium (LA) [3], and the right ventricle (RV) [4]
segmentation. There are few studies on the simultaneous seg-
mentation of the four cardiac chambers. In DW-Net [5], the
segmentation of four cardiac chambers is achieved through
multi-scale contextual information aggregation. Furthermore,
most of the work focused on adult patients [2], [3], [4], [6],
[7], but less on fetal echocardiography [8].

This paper proposes a generic and novel system framework
for cardiac chamber segmentation in fetal echocardiography.
Unlike previous research, which uses semantic segmentation
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method [6], [7], we utilize the instance segmentation to
simultaneously segment four cardiac chambers and a novel
object proposals recovery strategy to retrieve missing parts.
This method will help cardiologists better to analyze the
structure and function of the fetal heart.

The paper is organized as follows: In Section 2, we
describe related work. Section 3 discusses the technical
details of the framework. Experimental results are presented
in Section 4. Finally, Section 5 concludes the paper.

II. RELATED WORK

The echocardiographic segmentation methods can be di-
vided into two main categories: non-deep learning techniques
and deep learning techniques. Early methods use the formal,
while the more recent methods use the latter. Early echocar-
diographic segmentation methods used non-deep learning
techniques. A level set deformable model was proposed to
segment four cardiac chambers using region-based informa-
tion simultaneously [9]. Similar method proposed in [10] can
automatically segment the small fetal cardiac chambers. This
paper will focus on the use of deep learning techniques for
echocardiographic segmentation. In 2012, a two-stage deep
learning method for the LV segmentation in four-chamber
view was proposed [11]. The results showed the robustness to
imaging conditions and shape variations compared to tradi-
tional methods, such as level-sets and deformable templates.
A multi-texture active appearance model (AAM) based on
the Hermite transform (HT) was proposed to achieve an
efficient segmentation of the LV in fetal echocardiography
[12]. ACNN [7] utilized anatomical prior knowledge for
cardiac image segmentation and enhancement. In [6], six
different methods were evaluated using an open large-scale
dataset (CAMUS: Cardiac Acquisitions for Multi-structure
Ultrasound Segmentation), which concluded that encoder-
decoder based neural network outperforms the non-deep
learning methods.

Recently, a method [8] focuses on fetal cardiac structure
localization problem, which aggregates global spatial context
and detects anatomical structures on spatial region proposals.
However, this method can only localize anatomical structures
without pixel-level segmentation. A semi-supervised learning
algorithm was proposed in [13], which used conditional
deep generative models as prior to improve the performance
of LV segmentation. A Bilateral Segmentation Network
(BiSeNet) [14] was used to automatic segment pediatric
echocardiography images. DW-Net [5] performs apical four-
chamber view segmentation on healthy hearts, which is easier
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Fig. 1. The segmentation network architecture

than the segmentation of abnormal hearts in this study. This
paper studies the cardiac chambers segmentation in fetal
echocardiography, which is more complicated than the adult
and pediatric echocardiography.

III. METHODOLOGY

Our work formalizes the cardiac chambers segmentation
as an instance segmentation problem, which utilizes Mask R-
CNN [15] to segment four cardiac chambers simultaneously.
We propose using a rotation and distortion strategy for data
augmentation and an object proposals recovery strategy to
obtain better results.

A. Data Augmentation

Due to the complexity of manual annotation by the cardiol-
ogists, the echocardiology datasets commonly have less than
one thousand annotated images, insufficient for deep neural
network training. Therefore, data augmentation strategies
should be performed to increase the diversity of the data.

There are recurrent rhythmical movements in the periodic
expansion and contraction of the fetal heart. We propose to
utilize a rotation and a distortion operation on images to
mimic the fetal heart’s movements. The rotation operation
can be realized by applying an affine transformation to
an image. We adopt randomized and elastic distortions on
images.

Fig. 2. Two segmentation results with (right) and without (left) our object
proposals recovery strategy. In the bottom, the echocardiagraphy shows a
complex congenital heart disease: dextrocardia with inverted ventricular.

B. Segmentation Network

Instance segmentation is the task of assigning a class-
aware and instance-aware label to each pixel of the image.
To segment four cardiac chambers, we utilize Mask R-CNN
[15] to produce accurate segmentation masks. Mask R-CNN
is based on Faster R-CNN [16], which has two outputs, a
class label, and a bounding box offset. A mask branch is
added for predicting segmentation masks on each Region
of Interest (ROI). A RoIAlign layer is used to replace the
commonly used RoIPool layer to extract an object’s finer
spatial layout. The network architecture is shown in Fig. 1.

C. Object Proposals Recovery

One heart chamber class should appear once in an echocar-
diographic frame because we only reserve the object proposal
with the highest score in each class. Some heart chambers
may be lost in the final segmentation results of Mask R-
CNN. This is because an object with a higher score may
be incorrectly classified as a specific class and edge out
the object with a lower score but belongs to this class. We
propose a novel strategy to tackle this problem. Firstly, the
center of each ROI and L2 distances between centers are
computed. Secondly, if two centers’ distance is below a
threshold of ε , we treat these ROIs as a cluster. ε is set
to an empirical value since the class boundary is clearly
distinguishable. Finally, if a cluster’s ROIs belong to the
same class, they are labeled to this class. Otherwise, we
calculate the overall scores of these ROIs and decide the
class according to the largest score. If a class exists in the
previous procedure, it will not be considered in the score
computation step. Using this strategy, we can retrieve the
missing part and obtain better results, as shown in Fig. 2.

We assume a ROIs cluster contains N ROIs, and the score
of each ROI in the four categories is {s1

i ,s
2
i ,s

3
i ,s

4
i }, i = 1...N,

then the score of ROIs for category j is:

S j =
1
N

N

∑
i

s j
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Then we compute each ROIs cluster’s four category scores
and rank all category scores of all ROIs clusters. Finally,
Algorithm 1 generates the categories of the clusters, which
are regarded as the categories of all ROIs in the clusters.
In this way, the predictions of the network are updated by
Algorithm 1.
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TABLE I
THE DETAILS OF THE FETAL ECHOCARDIOGRAPHY DATASET

Types of fetal heart disease Train set(#frames) Test set(#frames)

Healthy 142 16
Ebstein’s Anomaly (EA) 28 4

Cardiac Rhabdomyomas (CR) 87 12
Atrioventricular Septal Defect (AVSD) 114 14

Hypoplastic Left Heart Syndrome (HLHS) 73 6
Pulmonary Atresia with Intact Ventricular Veptum (PA/IVS) 62 8
Total Anomalous Pulmonary Venous Connection (TAPVC) 66 6

Total 572 66

Algorithm 1
Input: ROIs cluster’s number M; score, all ROIs clusters
all categories score indices, whose size is M× 4; ROIs id,
indices of ROIs after sorting by scores, whose size is M×4;
Class, indices of categories after sorting by scores, whose
size is M×4.
Output: ROIs class: category of every ROIs cluster.

1: initialize every ROIs cluster’s category to -1, ROIs class
← −ones(M).

2: for i = 1 to M ∗4 do
3: if ROIs class[ROIs id[i]] ==−1 then
4: ROIs class[ROIs id[i]] =Class[i]
5: end if
6: if ROIs class.min()>−1 then
7: break
8: end if
9: end for

D. Implementation Details

The proposed method is implemented using PyTorch and
trained on an NVIDIA P40 GPU. We use the pre-trained
weights of the ImageNet dataset and COCO dataset. The
models are then fine-tuned on our fetal echocardiography
dataset. The optimizer is stochastic gradient descent (SGD)
with a momentum of 0.9 and a weight decay of 0.0001.
The base learning rate is 0.01, and the training epoch is
100. Other loss functions are the same as that in Mask R-
CNN [15]. The threshold ε for object proposals recovery is
empirically set as 10 pixels.

IV. EXPERIMENTS AND RESULTS
We will first introduce the clinical datasets and give the

evaluation metrics used in our experiments. Then we evaluate
our method using different settings and demonstrate the
superior performance of our method.

A. Datasets

A dataset of fetal echocardiography is collected, which
contains echocardiographic sequences with four-chamber
views of 319 fetuses. The dataset was acquired using two
types of equipment, the General Electric Voluson E8 ul-
trasound system with transabdominal 2-to 4-MHz curvi-
linear transducers (GE Healthcare Ultrasound, Milwaukee,

WI, USA) or the Aloka SSD ultrasound system (Aloka,
Tokyo, Japan) using transabdominal 3-to 6-MHz curvilinear
transducers. All ultrasound examinations were performed
by experienced operators in the same medical center. This
dataset contains fetal echocardiography of healthy fetuses
and unhealthy fetuses with six types of fetal heart diseases,
which are Ebstein’s Anomaly (EA), Cardiac Rhabdomyomas
(CR), Atrioventricular Septal Defect (AVSD), Hypoplas-
tic Left Heart Syndrome (HLHS), Pulmonary Atresia with
Intact Ventricular Septum (PA/IVS) and Total Anomalous
Pulmonary Venous Connection (TAPVC). The cases in this
dataset include most types of congenital heart disease. More
than ten cardiologists participate in the manual annotation
of the contour of the cardiac chambers. Each fetal echocar-
diography sequence is annotated by one cardiologist and is
examined by another cardiologist. There are two frames of
annotation in each echocardiographic sequence, one is in
the end-diastolic, and the other is in the end-systolic. This
dataset is randomly divided into train set and test set, i.e.,
286 sequences are used for training and 33 for testing. The
overall number of labeled frames is 638, with the details of
the dataset given in Table I.

In the following experiments, we use the data augmen-
tation methods described below. The train set images are
rotated 360◦, with the interval of 30◦, which generates
12x more images. The distortion operations are performed
multiple times, with different times for different kinds of
disease, to balance the overall images in each category.

B. Evalutation metrics

To evaluate the accuracy of our method’s segmentation
output, we use four metrics in the experiments, which are
frequently used in medical image segmentation. Specifically,
the dice similarity coefficient (DSC), sensitivity, specificity,
and Hausdorff distance (HD) are evaluated.

The dice similarity coefficient (DSC) is defined as:

D = 2×
|Sseg∩Sgt |
|Sseg +Sgt |

(2)

Sseg is the area of the segmentation result of a method and
Sgt is the area of the ground truth. The DSC is a measure of
overlap between the ground truth and the segmented result,
with 1.0 represents perfect overlap, and 0.0 represents no
overlap.
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TABLE II
THE SETTINGS OF OUR METHOD

Different Settings M-1 M-2 M-3 M-4
ImageNet pre-trained X X X X

COCO pre-trained X X
with data augmentation X X X
with recovery strategy X

TABLE III
RESULTS OF FOUR CARDIAC CHAMBERS SEGMENTATION.

Parts Metrics M-1 M-2 M-3 M-4

Dice coefficient ↑ 0.6886 0.6780 0.7064 0.7192
LA Sensitivity ↑ 0.6835 0.6836 0.7113 0.7305

Specificity ↑ 0.9972 0.9982 0.9978 0.9978
Hausdorff distance ↓ 18.9924 22.2033 17.0644 16.7062

Dice coefficient ↑ 0.6927 0.7005 0.6653 0.6759
LV Sensitivity ↑ 0.6965 0.6911 0.6553 0.6669

Specificity ↑ 0.9961 0.9971 0.9980 0.9980
Hausdorff distance ↓ 24.8708 25.7863 29.2935 29.6767

Dice coefficient ↑ 0.7630 0.7711 0.7798 0.7941
RA Sensitivity ↑ 0.7794 0.7975 0.8127 0.8205

Specificity ↑ 0.9976 0.9969 0.9968 0.9971
Hausdorff distance ↓ 19.3185 17.0840 15.8978 15.7556

Dice coefficient ↑ 0.6578 0.6863 0.7095 0.7076
RV Sensitivity ↑ 0.6450 0.6874 0.7088 0.7078

Specificity ↑ 0.9963 0.9969 0.9968 0.9967
Hausdorff distance ↓ 26.3090 24.0388 24.7103 24.8770

The sensitivity and specificity of the segmentation methods
are computed using the manually segmented ground truth
mask, as shown in Eqn. 3 and Eqn. 4.

Sensitivity =
T P

T P+FN
(3)

Speci f icity =
T N

T N +FP
(4)

TP is the true positive and FP is the false positive, while
TN and FN stand for true negative and false negative.

HD is defined as Eqn. 5, with the distance computed using
the Euclidean distance.

HD(X ,Y ) = max
x∈X

min
y∈Y
‖x− y‖2 (5)

C. Method Evaluation

We conduct several experiments using different settings
to validate the effectiveness of the method. To pre-train the
model, we use only the ImageNet dataset or use both Ima-
geNet and COCO datasets. The data augmentation method
and the object proposals recovery strategy are also evaluated.
We denote the different methods as Method 1 to Method 4
(M-1 to M-4 for short), as shown in Table. II.

Firstly, we evaluate the importance of the data augmenta-
tion strategy. The model is pre-trained using ImageNet with
and without the proposed data augmentation (M-2 vs. M-1).
As shown in Table III, the Dice coefficients of M-2 is higher
than M-1 for LV, RA, and RV segmentation. The HD of M-2
is lower than M-1 for RA and RV segmentation, in which
lower distance means better accuracy. For the evaluation

of sensitivity and specificity, M-2 also has generally better
performance than M-1, which indicates the effectiveness of
the data augmentation strategy.

Secondly, we compare the method pre-trained with Im-
ageNet and pre-trained with both ImageNet and COCO
datasets (M-2 vs. M-3). We can see, M-3 has higher Dice
coefficients for LA, RA, and RV. For HD, M-3 gets a lower
distance for LA and RA. The sensitivity and specificity of
M-2 and M-3 are similar to each other.

Finally, the object proposals recovery (M-3 vs. M-4) will
improve the Dice coefficient. As shown in Table III, M-4 has
higher Dice coefficients for LA, LV, and RA. Furthermore,
for LA and RA segmentation, M-4 has lower HD values
(16.7062 and 15.7556) than M-3 (17.0644 and 15.8978). The
sensitivity and specificity of M-4 are also better than M-3 for
LA, LV, and RA segmentation. The effect of using the object
proposals recovery to retrieve missing parts can be seen in
Fig. 2. We show several segmentation results in Fig. 3, which
demonstrate our method’s good segmentation performance.

We also compare our method with U-Net [17], which is the
most frequently used segmentation method in medical image
analysis. As shown in Table IV, our method outperform U-
Net in almost all metrics. Our method’s Hausdorff distance
is much lower than U-NET, which demonstrates the superior
performance of the proposed method.

TABLE IV
COMPARISON OF OUR METHOD WITH U-NET [17].

Parts Metrics U-NET Our Method

Dice coefficient ↑ 0.6318 0.7192
LA Sensitivity ↑ 0.6312 0.7305

Specificity ↑ 0.9980 0.9978
Hausdorff distance ↓ 61.9734 16.7062

Dice coefficient ↑ 0.6174 0.6759
LV Sensitivity ↑ 0.6155 0.6669

Specificity ↑ 0.9970 0.9980
Hausdorff distance ↓ 62.4760 29.6767

Dice coefficient ↑ 0.7048 0.7941
RA Sensitivity ↑ 0.7456 0.8205

Specificity ↑ 0.9971 0.9971
Hausdorff distance ↓ 41.7324 15.7556

Dice coefficient ↑ 0.6515 0.7076
RV Sensitivity ↑ 0.6725 0.7078

Specificity ↑ 0.9957 0.9967
Hausdorff distance ↓ 62.5010 24.8770

V. CONCLUSION

We present an improved instance segmentation approach
capable of segmenting four cardiac chambers accurately at
the same time and thus provide more information for cardiol-
ogists. A rotation and distortion operation is used to perform
data augmentation, which better mimics the movements of
the fetal heart and improves the segmentation results. Our
method is based on the well-known Mask R-CNN, with a
novel object proposal recovery method to retrieve the missing
parts. Experiments conducted on a fetal echocardiography
dataset fully demonstrate the superior performance of our
proposed framework. In the future, we will support the
segmentation of more components of the fetal heart.
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Fig. 3. These are eight segmentation results. For each result, four figures are shown. (Top left) The original fetal echocardiographic image. (Top right)
The ground-truth segmentation. (Botton left) The original image covered by the segmentation result. (Bottom right) The segmentation results. The cardiac
chambers are indicated using different colors(red for LA, yellow for LV, green for RA, blue for RV).
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