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Abstract— Frailty is a common and critical condition in
elderly adults, which may lead to further deterioration of
health. However, difficulties and complexities exist in traditional
frailty assessments based on activity-related questionnaires.
These can be overcome by monitoring the effects of frailty
on the gait. In this paper, it is shown that by encoding gait
signals as images, deep learning-based models can be utilized
for the classification of gait type. Two deep learning models
(a) SS-CNN, based on single stride input images, and (b) MS-
CNN, based on 3 consecutive strides were proposed. It was
shown that MS-CNN performs best with an accuracy of 85.1%,
while SS-CNN achieved an accuracy of 77.3%. This is because
MS-CNN can observe more features corresponding to stride-
to-stride variations which is one of the key symptoms of frailty.
Gait signals were encoded as images using STFT, CWT, and
GAF. While the MS-CNN model using GAF images achieved
the best overall accuracy and precision, CWT has a slightly
better recall. This study demonstrates how image encoded gait
data can be used to exploit the full potential of deep learning
CNN models for the assessment of frailty.

I. INTRODUCTION

Advancements in healthcare and medical technologies in
the last few decades have dramatically changed the world
demographics. According to a recent UN report, our society
is aging so rapidly that by the year 2050 the number of
older persons worldwide would double to over 1.5 billion
compared to the year 2020 [1]. This continuous trend has put
forward new challenges to sustain healthcare and eldercare
which must be dealt with major focus shift in healthcare
services towards early diagnosis and preventive interventions
and strategies.

Frailty, a condition that prevails in old age, is considered
as a state of increased vulnerability or a precursor to more
adverse outcomes like morbidity, falls, institutionalization,
disabilities, and mortality [2]–[5]. Frailty can be defined as
a gradual decrease in physiological and functional reserves
as well as resistance to internal or external stressors. [3],
[6], [7]. However, if identified and treated at an early stage,
the onset of frailty and the consequent effects could be
delayed and in some cases avoided altogether for example
through early implementation of fall prevention strategies
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Fig. 1. Flow chart of proposed frailty classification methodology

[8] and multicomponent exercises (i.e. strength, endurance,
flexibility, and balance training) focused on improving the
functional capacity of the elderly [9]. These would help to
reduce the serious personal and societal impact that comes
with falling, resulting injuries, and their healthcare costs.

One of the most common methods to assess frailty in
a clinical setting is the ”Fried Criteria” [10] which iden-
tified five frailty phenotypes, namely, shrinking, weakness,
slowness, exhaustion, and low activity. The other widely
used criteria include the Study of Osteoporotic Fractures
(SOF) scale [11] and the FRAIL scale [12]. However, these
criteria rely on answers from the patient to activity-related
questionnaires. Trained professionals are required to explain
the questions, measure different phenotypes, and assess the
answers carefully to overcome subjective interpretation and
judgments. Furthermore, medical history may be essential
for more accurate assessment in some cases. All these factors
make these frailty assessments too cumbersome to use in the
acute hospital environment.

Gait has been strongly linked with frailty since the decline
in mobility and balance is one of the major indicators of
frailty and can be assessed through gait analysis [13]. Gait
velocity [14], [15] and variability [16] are among the most
significantly affected gait parameters in frail patients. The
use of wearable inertial sensors [17]–[20] to assess the gait
not only simplifies and speeds up the assessment procedure
but also gives a more objective evaluation of frailty status.

In this paper we propose a frailty assessment method
which uses deep learning CNN models with image repre-
sentation of gait data collected through Inertial Measurement
Unit (IMU) sensors. We propose two CNN models based
on single and multi-stride data. We also compare different
imaging techniques to evaluate their suitability for gait data.

II. METHODOLOGY

The frailty assessment methodology proposed in this paper
starts with the acquisition of gait data using IMU sensors as
shown in Fig. 1. Then gait cycle segmentation is performed
to extract individual gait strides. These segmented signals
are then encoded into images using different image encoding
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techniques. Finally, the encoded images are fed into CNN-
based models for classifying the gait type. The following
subsections describe the proposed methodology steps.

A. Participants and Data collection

The data for this study was collected from 71 elderly
subjects. Inclusion criteria were being older, community-
dwelling adults with age ≥ 65 years, and having the ability
to walk independently without a walking aid. Subjects with
any musculoskeletal abnormalities or severe gait and balance
disorders that may limit their ability to walk at least 20m
were excluded. The demographic characteristics of the cohort
are presented in Table I. A brief introduction about the
study was provided to the participants. A written and signed
informed consent was taken from all participants before the
experiment. This study was approved by the Institutional
Review Board of Kyung Hee University Medical Center.

TABLE I
DEMOGRAPHIC INFORMATION OF THE PATIENTS

Variable Mean ± SD (Range)

Age (years) 77.56 ± 3.92 (71-86)
Height (cm) 155.90 ± 18.35 (141.2-175)
Weight (kg) 60.08 ± 9.12 (41.4-93)

Gender
- Male (%) 38.02
- Female (%) 61.98

The frailty assessment of the subjects was made using
the FRAIL scale [12] which assigns scores from 0 to 5 in
an increasing order of frailty severity. A score of 0 implies
robust, 1-2 implies pre-frail, and 3–5 implies frail status.
However, the last two can be combined to be referred as
a non-robust state. Therefore, for this work, subjects were
divided into two groups, robust (with a score of zero) and
non-robust (with a score exceeding zero), in terms of their
frailty status. Out of 71 subjects, 26 were termed as robust
and the rest of the 45 as non-robust.

Fig. 2. IMU sensor and locations

Three IMU sensors (Xsens MVN, Enschede, Netherland)

were mounted on the subjects’ body as shown in Fig. 2.
One sensor was mounted on the posterior pelvis (positioned
flat on the sacrum) and one on each foot (positioned at the
middle of the bridge of the foot). The participants were
instructed to walk 20m while each IMU sensor recorded
the acceleration and angular velocity in its own 3D local
coordinate system at a sampling rate of 100Hz. All sensor
signals were passed through a noise filtering, 0.1-15Hz band-
pass filter before being upsampled to 1000Hz through cubic
spline interpolation. The data was then normalized to the
range [-1,1].

Fig. 3. An example of gait heel-strike events (circled) detected through
the Angular Velocity Y signal of right foot (green line) and left foot (indigo
line)

All six acceleration and gyroscope values from x-, y-,
and z-axes were used for the IMU sensor located at the
pelvis. For each foot, however, the x-, and y-axis values were
combined to get the magnitude of the resultant acceleration
and angular velocity. This enables to overcome errors that
arise from slight variations in sensor orientation at the bridge
of the foot. Hence, a total of 14 features (6 from the pelvis
and 4 from each foot) were extracted from the IMU sensors.
The gait segmentation was performed through detection of
heel-strike (HS) events from the angular velocity (sagittal
plane) as shown in Fig 3. The resulting individual stride
signals for each subject were then used for spectrogram
generation. A total of 642 strides were extracted, consisting
of 205 strides from the robust group and 437 strides from
the non-robust group.

B. Image Generation
By converting signals to images, the capabilities of CNN

were exploited to extract more diverse features from complex
local patterns in the images.

Short-time Fourier transform (STFT) was used to get
frequency and amplitude of localized waves within a span
of temporal window [21] as follows:

STFT {x(t)}X(τ, ω) =

+∞∫
−∞

x(t)ω(t− τ)e−jωtdt (1)

where x(t), ω(t), and τ denote the signals to be trans-
formed, a window function (Gaussian window in this study)
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centered around zero, and a time shift, respectively. The
spectrogram is generated by squaring the STFT magnitude
as follows:

spectrogram{x(t)} = ‖X(τ, ω)‖2 (2)

The frequency range was restricted to 6Hz and the time
resolution was fixed at 0.1s. Figure 4 (a) shows the STFT
spectrogram for the x-axis pelvis acceleration signal. The
brighter colors correspond to a higher energy frequency
component.

Compared to Fourier transform where signals are decom-
posed into sinusoids of different frequencies, in the Continu-
ous Wavelet Transform (CWT), the signals are decomposed
into shifted or scaled shapes from the mother wavelet. CWT
is defined [22] as:

C(a, b) =
1√∣∣a∣∣

+∞∫
−∞

s(t)Ψ∗
(
t−b
a

)
dt

a ∈ R+ − {0}, b ∈ R,

(3)

where f(t) is the input signal and Ψa,b(t) is the mother
wavelet with ’a’ as the scale factor and ’b’ as the shift
factor. The CWT for this study used the Morse wavelet
with 20 voices per octave and a frequency range restricted
to 15Hz. The visual representation of the CWT of a signal
is referred to as a scalogram. The scalogram for the x-axis
pelvis acceleration signal is presented in Fig. 4 (b).

Fig. 4. Example images generated for accelerometer x-signal on pelvis
sensor (a) using STFT (b), CWT (c), and GAF (d)

Granular Angular Field (GAF) is a method which uses
polar coordinates based matrix to encode a time series
into an image while still preserving the absolute temporal
relationships in the series [23]. In this study we use Gramian
Angular Summation Field (GASF) which uses the cosine of
the summation of angles from the polar coordinates and is
given as:

GASF =


cos(φ1 + φ1) . . . cos(φ1 + φn)
cos(φ2 + φ1) . . . cos(φ2 + φn)

...
. . .

...
cos(φn + φ1) . . . cos(φn + φn)

 (4)

Figure 4 (c) shows the GASF for an example signal. All
images from STFT, CWT, and GAF were produced with the
dimensions 224x224 pixels. A total of 17,976 images were
produced from the three sensors from the 71 participants.

Fig. 5. CNN model architecture (a) Single-stride-CNN (b) Multi-stride-
CNN

C. Convolution Neural Network Modeling

To prepare the images for input to the CNN model,
all images, sized 224 x 224 x 3 (3-channel RGB image)
each, from each of the 14 parameters were stacked in the
order of pelvis, right foot, and left foot. This way, for each
stride, the input image set of size 224 x 224 x 42 was
obtained. Two types of CNN models were proposed in this
study: the Single-stride-CNN (SS-CNN) and Multi-stride-
CNN (MS-CNN). SS-CNN uses a single stride image set
(Si) as input to train and classify between the two output
classes robust and non-robust for training and testing. as
shown in 5 (a). However, MS-CNN uses three consecutive
strides (Si, Si+1, Si+2)) of the subject for the task as in Fig. 5
(b). Leaping one step ahead of just learning on features from
each stride, the MS-CNN further enables identification and
learning of features related to stride-to-stride variability in
the gait. For n consecutive strides, n−2 three-stride sets were
extracted. For instance, for a subject having 10 consecutive
strides in the data, 8 three-stride sets were obtained as [1, 2,
3], [2, 3, 4], [3, 4, 5] ... [8, 9, 10]. This resulted in a total
of 360 stride sets, 103 from the robust group and 257 from
the non-robust group.

The proposed architecture of SS-CNN consists of six con-
volutional blocks, followed by three fully connected layers
and a sigmoid layer at the output as shown in Fig. 5 (a).
Each convolutional block contains a convolutional layer, a
Rectified Linear Unit (ReLU) layer, a batch normalization
(BN) layer, and a Maxpooling layer. The six convolutional
layers have filter sizes 64, 128, 128, 128, 256, and 512. The
kernel size is set to 20x20 for all. The three fully connected
layers have lengths 64, 32, and 1 as the output. Dropout
layers are applied to the fully connected layers. The detailed
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Fig. 6. The detailed architecture of CNN and Dense block in the CNN model

architecture of CNN and fully connected layers is given in
Fig. 6.

In MS-CNN, instead of a single stride image set, the input
consisting of three consecutive stride image sets goes into
separate convolutional blocks which are concatenated before
the fully connected layers as shown in Fig. 5 (b). Here, the
design parameters for the convolutional blocks and the fully
connected layers have been kept the same as in SS-CNN.

D. Training and Testing

For both types of models, 90% of images were selected
for training and 10% for testing, in a stratified manner as
to keep the same class distribution as in the original data.
A stratified shuffle split cross-validation with five folds was
used to evaluate performance. The networks were trained
using Adaptive learning rate (ADADELTA) to make the best
of both, learning rate annealing and momentum training to
converge faster. Initial values of the weights and bias were
initialized with Glorot uniform initializer. An early stopping
criterion was employed to stop training when the validation
accuracy did not improve for 5 epochs.

TABLE II
MODEL RESULTS

Model Image Accuracy Precision Recall F-Measure

SS-

CNN

STFT 0.66 0.722 0.843 0.778

CWT 0.713 0.808 0.813 0.811

GAF 0.773 0.810 0.878 0.843

MS-

CNN

STFT 0.72 0.808 0.889 0.847

CWT 0.823 0.875 0.904 0.889

GAF 0.851 0.912 0.896 0.904

III. RESULTS AND DISCUSSION

Table II shows the classification results for the two
proposed models. As SS-CNN uses single stride images,
hence the number of training samples was equal to the total
number of strides available in the data. On the other hand,
the MS-CNN requires a set of three consecutive strides,
which reduces the number of training samples by about
half. Nonetheless, the MS-CNN attains better performance
compared to the SS-CNN for all three types of images. That
is because the output of MS-CNN architecture relies not only

on the features of each stride but more importantly on the
gait dynamics and stride-to-stride variation within the three
strides. This gives MS-CNN a considerable advantage over
the SS-CNN, and hence it attains an average 8.2% higher
accuracy.

Models trained on GAF images achieved the best accuracy
among the three, while CWT and STFT come next in
sequence. Unlike CWT and STFT which are classical time-
frequency methods, GAF is used to encode time series as
images, while preserving the temporal correlations existing
in the signal. The deep learning model uses this temporal
dependence within the gait time series for a better prediction.
For the SS-CNN model, GAF achieved an accuracy of
77.3% while CWT achieved 71.3% and STFT achieved 66%.
The sequence is followed in terms of precision, recall, and
F-Measure for the SS-CNN. Moreover, for the MS-CNN
model, GAF achieves an accuracy of 85.1%, the best overall
in this study, while CWT achieves 82.3% and STFT achieves
72%. Although MS-CNN also has GAF as the best model
in terms of accuracy and precision, however, CWT has a
slightly higher recall in this case.

Figure 7 shows the confusion matrices for the two best
MS-CNN models and the best SS-CNN model. Comparing
the two confusion matrices of the MS-CNN model with
GAF input (Fig. 7(a)) and MS-CNN model with CWT input
(Fig. 7(b)) that GAF generated 12 false positives, much
less than 18 in CWT’s case, indicating the better precision
achieved through GAF. However, CWT generated one less
false negative and one more true positive compared to GAF,
showing its slightly better recall performance.

In Fig. 7 (c), the confusion matrix for SS-CNN with GAF
as input is given. The numbers are not directly comparable
with those in MS-CNN because of the different number of
samples, but we see from the normalized values that SS-CNN
using GAF input gives 19% more false positives and over 1%
more false negatives compared to MS-CNN using GAF. This
shows that its precision performance is much worse than its
recall performance.

While a better recall is more desirable than precision
in disease classification, however in this case the recall
performance improvement of MS-CNN using CWT over
GAF is not significant (1%), however, it gives much lower
precision performance compared to GAF (difference of
3.7%). Therefore, we could say that overall, MS-CNN using
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Fig. 7. Confusion matrices for (a) MS-CNN using GAF (b) MS-CNN
using CWT, and (c) SS-CNN using GAF

GAF input provides a better assessment of frailty with its
higher accuracy and F-measure.

Regarding the poorer performance of STFT compared to
the CWT, STFT uses a fixed window length resulting in
a fixed frequency resolution. Shorter window lengths give
higher time resolution but deteriorate frequency resolution.
Contrarily, longer window lengths give higher frequency
resolution but reduce time resolution [24]. This limits STFT’s
ability to perceive all time-frequency variations in the signal.
This missing information fails to appear on the produced
STFT spectrogram images, essentially causing a drop in its
performance. CWT, on the other hand, works with variable
window lengths, using shorter window lengths for higher
frequencies and longer window lengths for lower frequencies
[25]. Hence, it gives a superior frequency-time resolution.

IV. CONCLUSIONS

Gait IMU data was collected for frail and non-frail elderly.
It was shown that by encoding gait signals as images, deep
learning-based models can be utilized for the classification
of gait type. The proposed multi-stride-based CNN deep
learning model using GAF as input achieved an accuracy of
85% and precision of 0.912. This work shows that frailty can

be assessed with high accuracy using gait IMU data encoded
as images. Deep learning models can learn the features
capturing the changes in temporal signal patterns and stride-
to-stride variations. As future work, it will be interesting
to explore the recurrent neural network-based deep learning
models that are better suited for the identification of patterns
in time-series data.
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