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Abstract— The incredible pace at which the world’s elderly
population is growing will put severe burdens on current
healthcare systems and resources. To alleviate this concern the
health care systems must rely on the transformation of eldercare
and old homes to use Ambient Assisted Living (AAL). Human
identification is one of the most common and critical tasks for
condition monitoring, human-machine interaction, and provid-
ing assistive services in such environments. Recently, human
gait has gained new attention as a biometric for identification
to achieve contactless identification from a distance robust to
physical appearances. However, an important aspect of gait
identification through wearables and image-based systems alike
is accurate identification when limited information is available
for example, when only a fraction of the whole gait cycle or only
a part of the subject’s body is visible. In this paper, we present a
gait identification technique based on temporal and descriptive
statistic parameters of different gait phases as the features and
we investigate the performance of using only single gait phases
for the identification task using a minimum number of sensors.
Gait data were collected from 60 individuals through pelvis and
foot sensors. Six different machine learning algorithms were
used for identification. It was shown that it is possible to achieve
high accuracy of over 95.5% by monitoring a single phase of the
whole gait cycle through only a single sensor. It was also shown
that the proposed methodology could be used to achieve 100%
identification accuracy when the whole gait cycle was monitored
through pelvis and foot sensors combined. The ANN was found
to be more robust to less number of data features compared
to SVM and was concluded as the best machine algorithm for
the purpose.

I. INTRODUCTION
The significant advancements in medical science and tech-

nology in the last few decades have caused an unprecedented
transformation in global demographics. Life expectancy has
increased at a rapid scale, so much so that according to
a recent United Nation’s (UN) report, the world elderly
population is expected to grow more than double its current
size by 2050 [1]. On the other hand, fewer and fewer people
in the younger age group will be available to provide for
the increasing health care demands of the elderly. This
calls for revolutionizing the elderly homes and health care
service centers through the realization of Ambient Assisted
Living (AAL) systems [2]. The recent rapid growth of 5G
technologies, wireless sensor networks, and wearable sensors
together with tremendous advancements in the Machine
Learning (ML) domain, has opened new possibilities for
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complete automation of services through continuous and
unobtrusive tracking, condition monitoring, diagnostics, and
risk prevention [3].

Person identification is an essential prerequisite for ini-
tiating any personalized service in a smart living space.
The majority of well-known biometric techniques in practice
today have their limitations. First, most of these just provide
authentication at a specific instant or location that is not
suitable for continuous monitoring or tracking. Physiological
techniques such as fingerprint, iris, or vein scans all require
physical contact with scanning devices. Another important
aspect is the vulnerability of appearance-based biometric
systems, which could make them more prone to imitation.
Appearance-based techniques like face recognition can have
problems in the presence of occlusion. A typical example
of such a problem is the mass usage of face masks as
a result of the recent pandemic outbreak. This has also
raised a new level of surveillance and security concerns. In
such a scenario, it is highly desirable to identify humans
unobtrusively from a distance regardless of changes in their
appearance. All these concerns have directed new attention
towards behavioral biometrics, especially gait-based human
identification, which could overcome these problems.

The biological characteristics of a person’s body, including
age, gender, height, weight, and health condition, result in
a unique pattern of gait motion which can be used as a
human biometric identification [4], [5]. Apart from being
contactless, gait-based systems are hard to fake. The two
main methods used for gait monitoring are the wearable
sensors and image-based methods [6], however, the former
is preferred for its continuous and accurate measurement
without any dependence on view angle pose and visibility.
Utilizing minimum time and resources to accurately accom-
plish the recognition task is a concern for all methods.
One of the things that makes gait recognition (and most
of the other behavioral biometrics) is that it requires a time
sequence of information about the position and movement of
the person’s body joints. And the problem arises when this
data cannot be retrieved for the required period continuously.
A common example of this would be video-based gait
recognition systems where one of the two scenarios can
occur: (1) The subject’s complete body joints are visible in
the video, however, only for a fraction of the complete gait
cycle duration, (2) The subject is visible for at a complete
gait cycle duration, however, not all of his body joints are
clearly visible. These issues may result from self-occlusion,
occlusions from the external environment, or other subjects.
Therefore, to alleviate this concern, in this work we investi-
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Fig. 1. Overview of proposed gait identification methodology

gate and identify the minimum time frame in the whole cycle
that contains key features adequate for accurate recognition.
In addition to locating the period of interest, we also find
which locations on the body hold more valuable information.
Apart from resolving the problems mentioned earlier where
limited information is available, using the sensor data for
only some fraction of the whole gate cycle, and reducing the
number of sensors to be monitored will also result in faster
computation times. Furthermore, for wearables, this can yield
a significant reduction in energy consumption, which is one
of the main challenges they face [7].

Inertial measurement unit (IMU) sensors are known for
their accuracy in the analysis of complex motion. Their
lightweight and small size make them ideal for monitoring
human gait motion at different joint locations. They are
embedded with an accelerometer and gyroscope, which can
be used to precisely analyze the translational and angular
dynamics of the gait in the 3-axes. IMU sensors have been
widely used for gait-related tasks. These include gait phase
detection [8], [9], [10], prediction of biological variables
[11], [12], detection of abnormalities [13], [14], activity
recognition [15], [16], [17] and person identification [18],
[19], [20], [21].

Regarding the use of a minimum number of sensors, a
lot of work has been done by using a single inertial sensor
located on the pelvis or foot mostly for activity recognition
[22], [8], [23], estimation of temporal events and parameters
[24], [25], [26]. For person identification, a single sensor on
the pelvis [27], [28], foot [19] and ankles [29] have been
illustrated. The effect of sensor location on identification
performance has been discussed in [30] and more recently
in [31], however, the number of subjects used is not enough
in both ( 10 and 20 respectively) and they use complete
stride for classification instead of a fraction. To the best
of the author’s knowledge, the comparison of different gait
phases in terms of person identification accuracy has not been
clearly investigated in the literature.

In this paper, we investigate the monitoring locations and
gait phases critical for an acceptable person identification
performance using minimal IMU sensors. The main contri-
butions of this study can be summarized as follows:

1) We propose an identification methodology based on
temporal parameters of the gait combined with descrip-
tive statistics of different gait phases as the features.

2) Three sensor locations and their combinations have
been investigated to find the most suitable sensor
location.

3) By using only a fraction of the complete gait cycle,
we investigate the most valuable gait phase that gives
a satisfactory gait identification accuracy.

4) We use and compare 6 well-known machine learning
techniques using the proposed input features to evalu-
ate the identification performance.

The proposed methodology used in this paper is depicted in
Fig. 1. First, the IMU data is preprocessed after collection.
Next, the data is segmented to extract individual gait phases.
Temporal and descriptive statistics parameters are then ex-
tracted and used as input to classifiers for identification. The
rest of the paper is organized as follows. The data collec-
tion, preprocessing, gait cycle overview, feature extraction,
and identification are presented in Section II. Results are
analyzed and discussed in Section III and finally, Section IV
concludes the work.

II. METHODOLOGY

The following subsections describe the proposed method-
ology steps.

A. Data collection

Data were collected from a total of 60 individuals, with
ages between 20s to 60s. A commercial IMU-based motion
capture system (Xsens MVN, Enschede, Overijssel, Nether-
land) was utilized. A total of 3 IMU sensors were attached
to each subject, one on the pelvis and one on each foot. The
subjects were instructed to walk at their preferred speed and
an average of 9 strides were collected from each subject. For
each sensor, accelerometer, and gyroscope data was collected
at a sampling rate of 1000S/s.

B. Data Preprocessing

Noise in the form of high-frequency spikes in the raw
data could hinder the detection of gait phases. Therefore,
a 3 order, zero-lag Butterworth band-pass (0.5-15Hz) filter
was used to filter high-frequency noise from the raw data.
To overcome the location-based errors in the accelerometer
output, all accelerometer data were scaled to the range 0
to 1 using the MinMax scaling which preserves the shape
of the original distribution. This makes the raw data more
comparable between subjects. Furthermore, the sensors at
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Fig. 2. Phases and subphases of human gait cycle

the feet are prone to errors in orientation. This sometimes
results in intermixing of acceleration and angular velocity
measured along the X and Y axes resulting in data from
different subjects difficult to compare. To alleviate this error,
we compute new combined magnitude measurements along
the two axes for the feet sensors as follows

Mag(t) = Rxy =

√
Rx(t)

2
+Ry(t)

2 (1)

C. Overview of human gait cycle

To understand the feature extraction and interpret the
results from different phases of the human gait cycle, it
is important to give a brief overview of these phases. The
normal human gait cycle starts as the heel of the reference
foot contacts the ground and ends when it contacts again
as shown in Fig. 2. The gait cycle is also referred to as a
stride. The stride can be broken into mainly the stance and
swing phases [32]. In the stance phase, the reference foot
is in contact with the ground surface, while in the swing
phase it remains off the ground. The stance and swing phases
normally constitute about 60% and 40% of the total gait cycle
respectively [33]. The stance phase can be further divided
into three subphases: initial double-limb support (DLS1),
single-limb support (SLS), and terminal double-limb support
(DLS2). DLS1 is the duration at the start of the stance phase
which starts as the reference foot heel strikes the ground,
called the heel-strike (HS) event. In this subphase, the body
is shifting its weight from reference foot in the front to rear
foot and both feet are in contact with the ground. Finally,
as the reference foot reaches a flat position on the ground,
the contralateral foot rises from the ground, an event known
as the toe-off (TO). This marks the start of SLS as only the
reference foot is in contact with the ground. The combined
duration of DLS1 and SLS is referred to as a step. The SLS
ends as DLS2 starts when the contralateral foot is stretched

forward and strikes the ground, called the heel-strike event
for that foot. For the duration of DLS2, both feet remain
in contact with the ground until the toe-off event occurs for
the reference foot marking the start of the swing phase of
the reference foot. In this phase, the reference foot is swung
from the back and stretched to the front. The swing phase
ends with a heel strike event for the reference foot, marking
the end of the current gait cycle.

D. Feature extraction

To extract the features, the gait cycle events heel-strike
and toe-off were first detected using the angular velocity
measured along the Y-axis at the two foot-sensors as shown
in Fig. 3. The signal consists of alternating peaks of low
and high amplitude. Here the toe-off was detected at the
high-amplitude peaks and the heel-strike at the point where
the signal crosses the zero line before the low-amplitude
peak [34]. Detection of these events enables computation
of all gait-phase intervals. From here we first extract tem-
poral parameters DLS1, SLS, DLS2, and swing for each

Fig. 3. An example of gait events detected through the Angular Velocity
Y signal
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adjacent right and left foot strides. Next, to capture the
signal dynamics during these phase intervals, we propose
using descriptive statistics parameters as features. Compared
to complex frequency domain-based or explicitly defined
time-domain features, descriptive statistics provide simple
yet powerful means of quantitatively summarizing the signal
dynamics in the selected intervals. We compute 4 basic
descriptive statistics parameters; minimum (MIN), maxi-
mum (MAX), mean (AVG), and standard deviation (STD)
of each sensor signal for each phase. By combining the
temporal parameters with descriptive statistics parameters we
are essentially extracting both the temporal and kinematic
variations of the gait which enable the classification networks
to distinguish and recognize gaits of different individuals.
Computing the 4 descriptive statistics parameters for each of
the 6 signals from the pelvis sensor and 4 from each foot (as
we measure magnitude parameters from X and Y axes), we
get a total of 24 descriptive statistics parameters. Combining
these with the 8 temporal parameters, we extract 32 features
in total for each stride from a subject. These 32 features
are extracted from an individual gait phase. The number of
features multiplies as we combined more than a single phase
for identification.

E. Training and Identification

The feature data were scaled using the MinMax scaling
before training. Since our data is composed of a different
number of strides for each subject, therefore we use the strati-
fied k-fold cross-validation procedure for training and testing
different classification algorithms with an 80/20 training-test
split. Six different machine learning techniques including k-
Nearest Neighbors (KNN), Support Vector Machines (SVM),
Random Forest (RF), Decision Tree (DT), Naive Bayes (NB),
and Artificial Neural Networks (ANN) were employed and
compared. For each classifier, a range of different parameter
values was tested and evaluated on the dataset to find
their optimal values that result in the highest classification
accuracy. For KNN, the optimal k value was found to be
1 through a bootstrap procedure. In SVM, the C parameter
was set to 1 and linear type kernel was used. For RF, the
optimal values for the number of trees and the maximum
depth of the tree were found to be 100 and 30 respectively.
The optimal value for minimum samples to split for DT was
found to be 2. For the ANN, the optimal set of parameters
was identified using the grid search technique. A two hidden
layer structure with 500 neurons in each layer was found to
be the best configuration. We used the Adam optimizer with
a constant learning rate of 0.001. The activation function
selected in the hidden and output layers is the hyperbolic
tan function, and softmax function respectively.

III. RESULTS AND DISCUSSION

The mean accuracies obtained from the 5-fold cross-
validation (CV) method for different configurations are given
in Table I. The highest accuracy obtained for each interval
(row) is highlighted in bold. From these results, it can be
observed that ANN and SVM both have the best performance

TABLE I
AVERAGE ACCURACY RESULTS FROM 5-FOLD CROSS-VALIDATION

KNN SVM DT RF NB ANN

FO
O

T

DLS1 0.766 0.600 0.577 0.796 0.764 0.768
SLS 0.834 0.572 0.564 0.881 0.826 0.866
DLS2 0.825 0.694 0.574 0.821 0.806 0.828
SWING 0.825 0.600 0.609 0.885 0.779 0.862
STEP 0.877 0.866 0.613 0.921 0.853 0.923
STANCE 0.953 0.979 0.589 0.953 0.891 0.964
STRIDE 0.964 0.987 0.655 0.975 0.921 0.977

PE
LV

IS

DLS1 0.815 0.798 0.543 0.862 0.808 0.874
SLS 0.933 0.861 0.613 0.932 0.878 0.942
DLS2 0.821 0.774 0.557 0.858 0.825 0.858
SWING 0.926 0.885 0.604 0.926 0.889 0.955
STEP 0.955 0.970 0.604 0.966 0.915 0.981
STANCE 0.981 0.989 0.577 0.987 0.943 0.981
STRIDE 0.992 0.994 0.662 0.991 0.943 0.991

FO
O

T
+

PE
LV

IS DLS1 0.909 0.960 0.609 0.925 0.874 0.957
SLS 0.979 0.979 0.660 0.975 0.932 0.991
DLS2 0.972 0.981 0.609 0.945 0.909 0.958
SWING 0.985 0.975 0.685 0.974 0.913 0.968
STEP 0.987 0.996 0.649 0.970 0.938 0.998
STANCE 0.994 0.998 0.651 0.994 0.947 0.996
STRIDE 1.000 1.000 0.657 0.992 0.960 1.000

overall while DT yields the least accuracy. Another important
observation that can be made about SVM and ANN from
the table is that the SVM yields higher accuracy when a
high number of features are provided. This is evident from
the results as the SVM results in high accuracy for either
when a longer portion of the gait cycle was used (STANCE
and STRIDE) or when both pelvis and foot-sensors were
monitored. In contrast, the ANN is more robust to the number
of input data features as it also yields high accuracy for both
single gait phases and single monitoring sites. Therefore,
it can be concluded that ANN is overall the best machine
learning algorithm for gait identification. The maximum of
100% identification accuracy was achieved when a complete
stride (gait-cycle) was monitored using both pelvis and foot
sensors by employing the KNN, SVM, or ANN.

From the results, we can compare the identification per-
formance of individual gait phases of the gait cycle. We

Fig. 4. Individual gait phase comparison through ANN results
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Fig. 5. Increase in accuracy with increasing fraction of gait cycle used for
classification

illustrate this by charting the ANN results in Fig. 4. It is
evident from these results that SLS and SWING phases
have higher accuracy compared to DLS1 and DLS2. This
result was expected because in the two double limb support
phases DLS1 and DLS2, both feet are in contact with
the ground and have fewer signal dynamics compared to
the SLS and SWING phases where one foot swings from
back to the front. Hence, it can be stated that the SLS
or SWING phase are more critical intervals for monitoring
in the overall gait cycle for gait identification. Now, to
determine the possibility of using only a single gait phase
for achieving high identification accuracy, the results show
that high identification accuracy is possible when monitoring
a single phase in the whole gait cycle even through using a
single sensor. As shown in Fig. 4, using the pelvis sensor in
the SWING phase can yield a high accuracy of 95.5% which
is obtained from the ANN. Similarly, the SLS phase gives the
best results with an accuracy of 94.2% when monitoring the
pelvis only. These are the two most efficient configurations
which use a single sensor for only a fraction (2/5th) of the
gait cycle and are still able to achieve a high recognition
accuracy. If we include both the feet and the pelvis these
accuracies can be increased to 99.1% and 96.8% respectively.

It is also important how the identification performance
improves as we start from the first gait phase (DLS1) and
start combining the phases sequentially up to the complete
gait cycle. As the classifier gets a higher fraction of the
complete gait cycle, its performance improves until reaching
the maximum when its provided with the complete gait cycle.
This can be observed in Fig. 5 where the ANN results are
charted separately.

The performance of the three configurations of monitoring
locations; foot, pelvis, and both combined for the SWING
phase is illustrated separately in Fig. 6 for each of the
techniques. It can be observed that the overall pelvis is a
better monitoring site for gait identification compared to the
feet. This is because the pelvis motion accounts for three of
the six gait determinants, namely pelvic rotation, obliquity,
and lateral displacement of the pelvis. Thus pelvis sensor can

Fig. 6. A comparison of different monitoring site configurations

observe dynamics from all kinds of body movements in the
three axes. Furthermore, the pelvis is less prone to sensor
location and orientation errors compared to the sensors in
the feet.

In Fig. 7 the confusion matrix for identification through
ANN has been presented as an example when only the
pelvis was used as the monitoring site for the duration of
the DLS1 phase. This case has been selected to observe the
predictions when the accuracy is not 100%. As shown, most
of the individuals were identified correctly. For the incorrect
predictions, not all steps from an individual were incorrectly
predicted. It is interesting that for the four individuals with
0% identification accuracy (labeled 22, 38, 50, and 58) the
number of extracted strides was 4, 5, 8, and 8 respectively.
This shows that the incorrect predictions are not made
because of the lower number of samples. These failures
could be a result of other factors in the features extracted
for these individuals. Nonetheless, it must be noted that all
individuals in the dataset including these failed ones were

Fig. 7. Normalized confusion matrix for ANN as an example when
monitoring pelvis for the DLS1 phase
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identified correctly using both pelvis and foot sensors for
the duration of the complete gait cycle.

IV. CONCLUSIONS

An IMU-based gait identification methodology was pro-
posed, using the temporal parameters of the gait combined
with descriptive statistics parameters as gait modeling fea-
tures. We investigated the possibility of using a single gait
phase for identification with a single sensor monitoring site.
For the most efficient configuration, using only a single
sensor with monitoring of only a single gait phase, a high ac-
curacy of 95.5% was achieved through the ANN (with pelvis
sensor for SWING phase). A 100% identification accuracy
was achieved when all pelvis and feet sensors were used for
the whole gait cycle through KNN, SVM, and ANN. It can
be concluded that a reasonably accurate human identification
even with a single sensor can be achieved provided that
the suitable intervals are monitored correctly. These findings
can be useful for a more efficient and robust gait-based
human identification through any sensing methodologies in
the future.
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fying human activities with miniature inertial and magnetic sensors,”
Pattern Recognition, vol. 43, no. 10, pp. 3605–3620, 2010.

[17] K. Frank, M. J. Vera Nadales, P. Robertson, and T. Pfeifer, “Bayesian
recognition of motion related activities with inertial sensors,” in
Proceedings of the 12th ACM international conference adjunct papers
on Ubiquitous computing-Adjunct, 2010, pp. 445–446.

[18] S. Sprager and M. B. Juric, “Inertial sensor-based gait recognition: A
review,” Sensors, vol. 15, no. 9, pp. 22 089–22 127, 2015.

[19] B. Huang, M. Chen, P. Huang, and Y. Xu, “Gait modeling for human
identification,” in Proceedings 2007 IEEE International Conference
on Robotics and Automation. IEEE, 2007, pp. 4833–4838.

[20] N. T. Trung, Y. Makihara, H. Nagahara, Y. Mukaigawa, and Y. Yagi,
“Performance evaluation of gait recognition using the largest inertial
sensor-based gait database,” in 2012 5th IAPR International Confer-
ence on Biometrics (ICB). IEEE, 2012, pp. 360–366.

[21] T. Zhang and G. Venture, “Individual recognition from gait using
feature value method,” Cybernetics and Information Technologies,
vol. 12, no. 3, pp. 86–95, 2012.

[22] M. Ghobadi and E. T. Esfahani, “A robust automatic gait monitoring
approach using a single imu for home-based applications,” Journal
of Mechanics in Medicine and Biology, vol. 17, no. 05, p. 1750077,
2017.

[23] M. Song and J. Kim, “An ambulatory gait monitoring system with
activity classification and gait parameter calculation based on a single
foot inertial sensor,” IEEE Transactions on Biomedical Engineering,
vol. 65, no. 4, pp. 885–893, 2017.

[24] D. Trojaniello, A. Cereatti, and U. Della Croce, “Accuracy, sensitivity
and robustness of five different methods for the estimation of gait
temporal parameters using a single inertial sensor mounted on the
lower trunk,” Gait & posture, vol. 40, no. 4, pp. 487–492, 2014.

[25] G. P. Panebianco, M. C. Bisi, R. Stagni, and S. Fantozzi, “Analysis of
the performance of 17 algorithms from a systematic review: Influence
of sensor position, analysed variable and computational approach in
gait timing estimation from imu measurements,” Gait & posture,
vol. 66, pp. 76–82, 2018.

[26] F. A. Storm, C. J. Buckley, and C. Mazzà, “Gait event detection in
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