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Abstract— In the last decades, a considerable effort has been
devoted to quantify complexity in physiological time series,
with a particular focus on heart rate variability (HRV). To
this end, exemplary quantifiers including Approximate Entropy
and Sample Entropy have successfully been applied by lever-
aging on statistical approximation and further parametrization
through the definition of tolerance and embedding dimension,
among others. In this study, we investigate the use of the
Algorithmic Information Content, which is estimated through
an effective compression algorithm, to quantify partition-based
Kolmogorov-Sinai (K-S) entropy on HRV series. We test such
a K-S estimate on real data gathered from the Fantasia
database, aiming to discern young vs. elderly complex dynamics.
Experimental results show that elderly people are associated
with a lower HRV complexity and a more predictable behavior,
with significantly lower partition-based K-S entropy than the
young adults. We conclude that partition-based K-S entropy
may effectively be used to investigate pathological conditions
in the cardiovascular system, complementing state-of-the-art
methods for complexity assessment.

I. INTRODUCTION

Kolmogorov-Sinai (K-S) entropy is a nonlinear quantifier
of dynamical systems and corresponds to the maximum
amount of information needed to describe the systems’
behavior [1]. From K-S entropy estimates it is possible to
discern between deterministic and random systems, with the
former being characterized by a finite K-S entropy, and the
latter associated with an infinite K-S entropy. Positive or
vanishing K-S entropy further distinguish between chaotic
and regular systems.

From a theoretical viewpoint, the K-S entropy of a time-
series can be obtained by considering the supremum among
all the values of K-S entropy associated with different
partitions of the codomain that the time series might cover
[1]. In other words, the information produced by the ergodic
dynamical system is computed with respect to partitions, i.e.
divisions of a space into different sets. If the space of a
dynamical system is divided through a fixed partition, any
orbit representing a time series [2] may be described in
terms of the sequence of parts visited in time. Thus, the K-
S entropy associated with the partition quantifies the mean
information needed to identify that specific sequence. In this
context, the behavior of an orbit might be intended as its
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peculiarity of being predictable, so the possibility to find
repetitive patterns in the sequence of the visited sets. In this
case, the higher is the series predictability, the lower is the
entropy value. Grassberger, Procaccia [3], [4], and Renyi [5]
achieved the estimation of a lower bound of the K-S entropy,
but they did not reach a factual K-S entropy quantification.

It has been proven that there exist special partitions able to
reach the supremum of K-S entropy among all the partitions,
which, by the definition, is the K-S entropy of the entire
time-series; these have been defined as generating partitions
[6], [7]. Since it is quite hard to find an analytical or explicit
expression for those generating partitions in case of real time
series, i.e., when the equation of the dynamical system is
unknown, it is convenient to use K-S entropy relative to finite
uniform partitions, i.e. formed by a finite number of sets of
the orbit’s codomain of equal length. It is known that the use
of uniform partitions with a vanishing diameter is a good way
to approximate K-S entropy in suitable conditions [6].

The use of partition-based K-S entropy is effective if the
system under study is perturbed by random noise because it
avoids situations where the supremum among all the parti-
tions is infinity [8], [9]. To our knowledge, K-S entropy has
not been applied to characterize complexity in cardiovascular
variability series; therefore, the proposed entropy estimation
may effectively complement the available set of complexity
estimates for HRV series, aiming to identify and characterize
different cardiac conditions in health and disease [10]–[12].

In this study, we use the Algorithmic Information Content
(AIC) and the Complexity of symbolic strings [13]–[15] to
compute the partition-based K-S entropy. Briefly, AIC uses
a symbolic string s of finite length whose elements are in a
finite alphabet and takes the shortest binary program that is
executable by a universal Turing machine, which gives the
string s as an output. The Complexity extends the notion of
AIC for infinite symbolic sequences.

Since the AIC represents a theoretical limit and so is a not-
computable function, we exploited a data compression algo-
rithm to estimate the AIC and, consequently, the partition-
based K-S entropy [16] in real HRV series gathered from the
publicly available database Fantasia [17]. Previous studies
suggest that complexity in heartbeat dynamics decreases
with age [18], [19], but this has not been investigated in
terms of K-S entropy yet. As mentioned above, the proposed
computation of K-S entropy through the AIC might consti-
tute an important step towards a more robust and effective
quantification of complexity in cardiovascular time series,
complementing quantifiers such as sample and approximate
entropy [20], [21], their multiscale estensions, Lempel-Ziv
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compression [22], and other complexity estimates adopting
techniques involving data compression [23] or not involving
data compression [24].

Note that the proposed K-S entropy quantification is not
bounded to preliminary choices of statistical parameters
such as the embedding dimension, the tolerance, and the
possibility of counting self-matches. Details follow below.

II. MATERIALS AND METHODS

A. Experimental Setup and Data Preprocessing

HRV series were gathered from the
database Fantasia [17], publicly available at
https://physionet.org/content/fantasia/1.0.0/. Briefly, twenty
young (21 - 34 years old) and twenty elderly (68 - 85 years
old) healthy subjects underwent 120 minutes of continuous
supine resting while continuous electrocardiographic (ECG)
signals were collected at 250Hz. Each subgroup of subjects
consists in the same number of man and women. All
subjects remained in a resting state while watching the
movie Fantasia (Disney, 1940) to help maintain wakefulness
[17]. For this pilot study, a total of 10 ECG recordings from
the young and 10 recordings from the elderly groups were
retained for further analyses. The HRV series were derived
by using the well-known Pan-Tompkins algorithm [25], and
then verified by an expert through visual inspection.

B. K-S Entropy Related to a Partition

Given an ergodic dynamical system (X,µ, f) described
by the continuous function f : X → X on a metric space X
and preserving the ergodic measure µ, we consider a finite
measurable partition Z = {Ii}i=1...N which splits the space
X into a µ disjoint finite collection of sets Ii. The definition
of entropy related to a partition Z is:

Hµ(Z) = −
N∑
i=1

µ(Ii) log(µ(Ii)) (1)

if we consider the partition Zn given by all the possible
intersections between the counter images f−j(Ii) for all i =
1, . . . N and for j = 0, . . . , n− 1, the Kolmogorov-Sinai
entropy hµ(f, Z) related to the partition Z can be defined as

hµ(f, Z) = lim
n→∞

1

n
Hµ(Zn) (2)

The partition-based K-S entropy is a quantifier of the in-
formation (with respect to the measure µ and the chosen
partition) needed to describe each point of the orbit of a
generic dynamical system.

C. AIC and Complexity

Let Ω be the set formed by infinite strings with elements in
a finite alphabet A = {1, . . . , N}. As mentioned before, the
AIC notion of a finite symbolic string s relates to the length
of the smallest binary computer program that produces s as
output: in other words, this program might be thought of
as a code which contains all the minimal information that

describes s. We define the complexity K for infinite strings
as

K(ω) = lim sup
n→∞

AIC(ωn)

n
, ω ∈ Ω (3)

where ωn is the string ω truncated at the nth element. It can
be interpreted as the length of the binary program identifying
each term of the string. Lower values of complexity are
associated with strings that show repetitive patterns and
hence necessitate less information to be described.

D. Symbolic Dynamics

By identifying the partition Z = {Ii}i=1...N with the finite
alphabet A = {1 . . . N}, any orbit of the ergodic dynamical
system is converted into a string of symbols by assigning
for each point of the orbit a specific symbol associated with
the set of the partition it is visiting. Through this process,
the complexity K(x, Z) related to a partition Z of the orbit
with initial condition x ∈ X is identified by the complexity
of the associated symbolic string.

In the case of ergodic dynamical systems, Brudno [13]
showed that:

K(x, Z) = hµ(f, Z), x ∈ X (4)

and for all finite measurable partitions Z of X . Eq. 4
guarantees the computation of the K-S entropy for a partition
through the complexity K(x, Z) and, consequently, the AIC.

Unfortunately, the computational procedure associated
with the AIC quantification is not performed by any al-
gorithm, and a compression algorithm should then be ex-
ploited. In this study, we applied the CASToRe compression
algorithm to approximate the AIC [15], especially because
of its speed of convergence in weakly chaotic systems
[15]. Moreover, the CASToRe algorithm is not bounded
to preliminary choices of statistical parameters such as the
embedding dimension, the tolerance and the possibility of
counting self-matches.

E. Complexity Estimation Procedure

Because of the different subjects’ heart rate, the original
HRV series have been interpolated at a sampling frequency
of 2Hz to obtain series of equal length. Supposing that
each HRV series of the dataset Fantasia corresponds to an
observable of the ergodic dynamical system described by the
cardiac cycles, each series was converted into a symbolic se-
ries with respect to a finite measurable uniform partition; then
the CASToRe algorithm was applied to compute complexity
K(x, Z), thus obtaining K-S entropy hµ(f, Z).

More in detail, Fig. 1 graphically shows the conversion of
the time series into a symbolic series, in which the interval
I = [0.6, 1.79] represents the subject-wise range of the
heartbeat series. In other words, interval I , on which the
partition of all subjects has been performed, has been chosen
as the complete range between the minimum and maximum
inter-beat interval across all subjects and time series. The
partitions considered on I are uniform, i.e. formed by sets
of the same length, so each set is associated with a symbol,
and the points of the time series are converted in a symbolic
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Fig. 1: Conversion of an exemplary time series to symbols.
The space of all the possible measurements has been divided
here according to a uniform partition of N = 5 sets, i.e.,
IN = I1, I2, I3, I4, I5. All the points of the series falling
in the same interval, here identified by the same color, are
converted into the same symbol.

string by taking into account the set of partition they belong
to. The CASToRe algorithm is then applied [15] and the K-S
entropy is evaluated from equations (3), and (4).

F. Statistical analysis

K-S entropy values extracted from artifact-free HRV series
in the two experimental groups (i.e., elderly, and young
people) have been compared by employing non-parametric
Mann-Whitney tests for unpaired samples, with the null
hypothesis of equal median between the two populations.
The statistical comparison has been repeated 15 times, for
partitions Z = {Ii=1...N} with increasing N , going from 2
to 17. The statistical significance was set to α = 0.01.

III. EXPERIMENTAL RESULTS

Fig. 2 shows the K-S entropy values related to the uniform
partitions for the two groups of subjects (elderly and young
people) as a function of the partition. The finer is the parti-
tion, the higher the values that are shown in the experimental
series of the two groups. Notably, young subjects show
consistently higher K-S entropy (close to K − S = 2 at
higher partitions) than elderly subjects.

The lower cardiac complexity associated with the elderly
is clearly shown in Fig. 3, where the K-S entropy group-
wise median is depicted for the two groups. Note that the
higher is the cardinality of the uniform partition considered
(i.e. the number of sets), the wider the difference between
the two groups. Such a difference is statistically significant
(i.e., p < 0.01) at almost every cardinality higher than 6.

IV. DISCUSSION AND CONCLUSION

In this preliminary study, the partition-based K-S entropy
has been estimated on real HRV series gathered from the
publicly available database Fantasia, considering 20 series
from 10 young and 10 elderly subjects gathered while
watching a movie. The K-S entropy computation has been
performed through the approximation of the AIC with the
lossless data compression CASToRe algorithm [15]. Results

confirmed that the proposed partition-based K-S entropy can
profitably be exploited as a potential biomarker quantifying
the complexity in heartbeat dynamics series.

From a methodological viewpoint, even if the partition-
based K-S entropy computation requires a sufficient large
number of samples (see eq. (3)-(4)), the CASToRe algorithm
speed of convergence confirms the robustness of the AIC
approximations [15]. While other compression algorithms
may be exploited to estimate K-S entropy [22], [23], the
proposed partition-based algorithm may provide better esti-
mates using real data. Indeed, CASToRe is able to compress
any finite time series with a lower amount of information
than other algorithms, e.g. Lempel-Ziv data compression,
especially in presence of repetitive patterns (it has been used
to study weakly chaotic dynamical systems) [15]. Eventually,
it results in a better approximation of the AIC, which, by
definition, represents the theoretical minimum [13]. More-
over, the CASToRe nonlinear approach has the advantage
of being not supported by preliminary choices of statistical
parameters, such as embedding dimension, tolerance, or
possibility of counting self-matches.

Our experimental results showed that K-S entropy values
tend to increase for all subjects as the cardinality of the
partition grows. This is due to the finiteness of the time
series considered: the more the number of intervals (and
hence symbols), the less the possibility to find similar or
predominant patterns in a finite symbolic time series [16].
Results confirmed that the complexity level, as quantified
through K-S entropy, is statistically higher in young adults
than in the elderly subjects, and the difference between the
two groups becomes statistically significant when more than
six intervals of the partition are considered. The lower values
of partition-based K-S entropy obtained for elderly subjects
prove the less amount of information needed to describe the

Fig. 2: The K-S entropy value related to uniform partitions
for elderly and young subjects. The x-axis refers to the
cardinality of partitions (range between 2 and 17), and the
y-axis refers to the K-S entropy values.
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Fig. 3: Median across subjects of partition-based K-S entropy
for the two groups, i.e., elderly (blue) and young (green).
Cardinality of partitions considered ranges between 2 and 17.
Asterisks indicate statistically significant comparisons (p <
0.01).

behavior of the associated heartbeat dynamics, as well as
the symbolic strings related to the HRV series report more
repetitive patterns when compared to younger subjects. More
specifically, it was found that partitions composed by at
least six uniform intervals are needed to detect statistically
significant differences among the two groups. This might
be due to the fact that when the partition is too coarse (i.e.
composed by few sets), all the heartbeat series tend to occupy
the same number of intervals, whereas in finer partitions the
time series of the young group tend to visit a higher number
of intervals and with faster variations from one interval to
the other, with respect to the elderly group. In this sense,
the HRV series gathered from elderly subject’s show more
predictability, leading to lower K-S entropy values.

From the physiological viewpoint, these results are in
agreement with previous studies suggesting that aging re-
duces the variability of the cardiac time series, while stress
and pathologies may accentuate this phenomenon [12], [26]–
[28]. Indeed, the proposed method confirms these results
needing less parameters such as time scaling [22] or the
embedding dimension [28]. Of note, it can be appreciated
that in our results the difference between the two groups of
subjects are stable with respect to the number of partition,
whereas other methods showed more variations [22].

Limitations of this work might be associated with the
relatively low number of subjects involved in the study, and
future developments should be directed towards a systematic
characterization of K-S entropy estimates in larger cohorts
and in different patho-physiological conditions.

To conclude, the proposed exploitation of the partition-
based K-S entropy computed through the approximation
of the AIC with the lossless data compression CASToRe
algorithm can be considered as a potential biomarker of
heartbeat dynamics, complementing state-of-the-art methods
for cardiac complexity assessment.
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