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Abstract— The analysis of electroencephalographic (EEG)
series associated with movement performance is important
for understanding the cortical neural control on motor tasks.
While the existence of long-range correlations in physiologi-
cal dynamics has been reported in previous studies, such a
characterization in EEG series gathered during upper-limb
movements has not been performed yet. To this end, here
we report on a fractional integrated autoregressive analysis
of EEG series during different functional classes of motor
actions and resting phase, and data were gathered from 33
healthy volunteers. Results show significant differences in EEG
long-range correlations on EEG series from characteristic
topography.

I. INTRODUCTION

Understanding the neural mechanisms underlying motor
control is a pivotal topic in science, with an impact on
several fields such as neuroscience, robotics, engineering,
and rehabilitation. Particular attention has been devoted to
the study of motor control of the hand. This is because the
hand is the main tool through which humans interact with
the external environment. Studies have also been focused
on the upper limb because it guides and optimizes the
hand position and orientation with respect to the external
targets [1]. The scientific literature on motor control and
the associated deficits (e.g., limb apraxia [2]) highlighted
that, from a cognitive viewpoint, upper limb movements
can be classified into three main categories based on the
type of interaction with objects: (i) intransitive movements,
movements excluding the use of an object; (ii) transitive
actions, movements involving the use of a single object;
and (iii) tool-mediated tasks, movements involving the use
of an object as a tool to interact with another object [2],
[3]. The static functional activity of the three classes has
been studied, and significant differences have been found,
both through functional magnetic resonance imaging [4] and
electroencephalography (EEG) analysis [5], [6].
Among the several neuroimaging techniques employed in
the study of brain activity during motor control processes,
EEG yields the highest temporal resolution, which allows
for an in-depth investigation of brain dynamics. EEG analysis
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can be performed through the parametric and non-parametric
approaches. The former approach, which does not encounter
spectral losses and provides satisfactory frequency resolu-
tion, is based on the use of stochastic linear models. Most
often, it is based on the autoregressive model (AR) [7].
Classical AR models are well suited for studying short-
memory processes, meaning processes with an autocorrela-
tion function (ACF) that decreases exponentially to zero [8].
This behavior implies that observations far apart in time from
one another are weakly dependent [8], [9]. Conversely, time-
series functions characterized by strong long-range correla-
tion, decaying at a much slower hyperbolic rate, are denoted
as long-memory processes.
Sample ACFs derived from EEG time-series functions gener-
ally demonstrate a slow decay in ACF coefficients, indicating
a non-negligible dependence between observations distant
from each other. This suggests the existence of long-range
correlations in EEG dynamics, particularly during emotional
and musical stimulation [10]. One possible approach to
long-memory process description in EEG data is to use
fractionally integrated autoregressive (ARFI) models. These
models, introduced by Hosking in [11], are of special interest
because of their capacity to model time-series behavior both
in the short- and long-term ranges.
Indeed, ARFI models are useful for analyzing several
time-series and can also be utilized in the physiological
domain [12]. In particular, ARFI-moving average (ARFIMA)
models, which are an extension of the well-known autore-
gressive moving average (ARMA) models, have been used to
extract long-memory components from heart rate variability
(HRV) recordings. The long-memory component might be
individuated by the spectral density function, which follows
a 1/f power law at very low frequencies [8], [13]. To the
best of our knowledge, the characterization of long-memory
components and long-range correlation on EEG time-series
during motor control tasks has not yet been attempted.
In light of the above, we present a preliminary study aiming
to investigate how the brain dynamics of long-memory
properties change across the scalp during different upper
limb movements. For the first time, the ARFI model is
applied to EEG-derived power time courses, and the manner
in which the EEG dynamics differentiate among different
types of upper limb movements is investigated.

II. MATERIALS AND METHODS

A. Experimental dataset
33 right-handed healthy subjects (26 yo on average, 16

females) volunteered to participate in the study. Experiments
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began with an initial baseline acquisition constituting the
resting phase, with subjects comfortably sitting, and eyes
opened. Consequently, an operator explained to the volun-
teers the task to be performed, mimicking the movements.
These tasks involved three main categories of actions: in-
transitive, i.e., motions not involving any object (e.g., cover
the eyes with the palm of the right hand), transitive, i.e.,
characterized by the interaction with an object (e.g., take a
cup and mimic drinking), and tool mediated, i.e., involving
the use of a tool to interact with another object (e.g., reach
and grasp a key to open a lock). Each category comprises
10 movements, each repeated 3 times, therefore a total of 90
tasks was performed (i.e., 3 classes × 10 movements × 3
repetitions each).

Electrical brain activity was recorded through high-density
128 channels Geodesic EEG Systems 300, with sampling
frequency of 500 Hz. The experimental procedure was ap-
proved by the local ethical committee. The EEG data is
part of a broader publicly available multi-modal, multi-center
database on arm motion control [14].

B. EEG processing

Signals were preprocessed to remove noise and any type
of artifact contamination. The processing was performed
following the Harvard Automated Preprocessing Pipeline
for EEG (HAPPE) [15]. Briefly, HAPPE involves channel
selection to discard the 38 most external channels, band pass
filtering (between 1 and 125 Hz), electrical noise removal,
bad channel rejection, ICA decomposition, artifact compo-
nent recognition and rejection, and average re-referencing. A
thorough description of the employed dataset and the applied
preprocessing procedure, to avoid noise and movement-
related artifacts, can be found in [5].

Power spectral density (PSD) was extracted for selected
90 EEG channels and all segments by using the well-known
Welch’s method with a 1s Hamming window and overlap of
96%, thus resulting in PSD series with a resolution of 0.04s
in time and 1 Hz in the frequency domain. Finally, PSD
has been filtered in the classical EEG analysis frequency
bands: δ ∈ [1 − 4]Hz, θ ∈ (4 − 8]Hz, α ∈ (8 − 12]Hz,
β ∈ (12 − 30]Hz, and γ ∈ (30 − 45]Hz. Time windows
of movements executions were segmented, thus having PSD
time series of 300 samples length on average.

C. ARFI modeling

A stationary process {Xtn}n∈Z is considered having long-
range dependencies if a real number α ∈ (0, 1) and a
constant cρ > 0 exist, such that:

ρ (k) ∼ cρ|k|−α, for k →∞ (1)

where ρ (k) indicates the ACF coefficients, defined as:
ρ (k) = cov

(
Xtn , Xtn+k

)
/var (Xtn). Eq. 1 can be formu-

lated in the frequency domain as:

f(λ) ∼ cf |λ|−β , for λ→ 0 (2)

where f(λ) denotes the spectral density of xtn , β = (1−α)
and cf is a constant term such that cf > 0 [9].

It is worth to introduce the conditional mean ARFI(p, d)
model, as a generalization of the well-known AR(p) model,
allowing to model the short as well as the long-memory
components of the data. In other words, a process xtn is
said to be ARFI(p, d), if it satisfies the following equation:

φ(B)∇dxtn = εtn (3)

where {εtn}n∈Z is Gaussian white noise N(0, σ2
ε ),

φ(z) = 1 +
∑p
i=1 aiz

i is polynomial of order p in the
lag operator B, such that φ(z) 6= 0 for |z| ≤ 1, B is the
backward-shift operator defined as Bkxtn = xtn−k

and ∇d
is the fractional difference operator defined as:

∇d = (1−B)
d

=

inf∑
j=0

(
d
j

)
(−B)j (4)

Thus, d is defined as long-memory parameter and quantifies
long-range correlations, whereas p, and the parameters in
φ(B) model short-range dependencies in the mean [8], [16].
In the range −0.5 < d < 0.5, the α and β parameters of Eq.
1 and Eq. 2 can be defined as a function of d, as α = 1−2d
and β = 2d [9]. For 0 < d < 0.5 an ARFI(p, d) process
has long-memory, for d = 0 ARFI(p, 0) reduces to the
usual short-memory AR(p) model [8]. Furthermore, a value
of 0.5 < d < 1 depicts non-stationary and mean-reverting
process, as it has been found in Heart-Rate Variability time
series [13].

An estimate of the actual parameter d, d̂, can be obtained
implementing the Local Whittle (LW) estimator [17], and the
LW likelihood function [17], that leads to the definition of
the following functional R(d):

d̂ = arg min
d∈Θ

R(d) (5)

where Θ = [∆1,∆2] is the closed interval of admissible
value for d, ∆1 and ∆2 are numbers picked such that
0 < ∆1 < ∆2 < 1. R(d) is an objective function, defined
as [17]:

R(d) = log

(
1

m

m∑
j=1

λ2d
j Iλj

)
− 2d

m

m∑
j=1

log λj (6)

where Iλj = 1
n |
∑n
t=1 xte

−itλj |2, with λj = 2πj
n for

j = 1, ...,m are the first m harmonics of the periodogram.
In this study, the d-parameter has been estimated on the

whole set of 90 EEG channels, 5 PSD bands time series, and
for all experimental classes (i.e., rest, intransitive, transitive
and tool mediated). The PSD time series were sampled at
25Hz, with an average length of 14 seconds resulting in
300 samples on average.

D. Statistical analysis

For each EEG channel and frequency band, non-
parametric Friedman tests for paired samples were applied
to evaluate significant changes in the long-memory compo-
nent between the four categories of movements, while non-
parametric Wilcoxon tests for paired samples were used for
pair-wise comparisons. For each subject, the extracted d-
values were averaged across movements belonging to the
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Fig. 1: Topographical
representation of the long-
term d-value averaged
across subjects and tasks.

same class for an effective estimation of class-specific long-
term memory parameter. Statistical significance was set to
95%, and p-values were corrected for multiple comparisons
through a Bonferroni correction.

III. EXPERIMENTAL RESULTS

Topographical representation of long-memory compo-
nents: In Figure 1, the topographical representation of the
measured d-values as the median across subjects, is depicted.
A substantial difference among the five frequency bands is
highlighted in all four experimental classes (that is, rest,
intransitive Intr., transitive Tr, tool-mediated T.M.). Specif-
ically, the θ band always presents the lowest values in the
intra-class graphical comparison, and it is followed, in order,
by the α and then the β band for the three motion classes
(i.e., Intr., Tr., and T.M.). In this case, the first difference
occurs with the rest category, in which the α band has a
visibly higher long-memory parameter d with respect to the
β band. The d-values peripheral on the scalp seem to be the
highest in all bands, whereas generally homogeneous mid
values are depicted in the δ band in all classes. Notably,
the four experimental groups have different ranges, with
the resting state having the lowest d-values; the other three
classes share similar d-value ranges, while the intransitive
class achieves a slightly higher range.

Moreover, the spatial distribution of the γ band seems
to have a general radial gradient, with lower values in the
central regions and higher values in the peripheral regions.
In fact, the highest d-values in the γ bands (which are the
highest among bands for each class) were measured in the
occipital region for intransitive and transitive movements
in the right lateral temporal and dorso-parietal electrodes
for tool-mediated actions, whereas this is achieved in the
prefrontal right lobe in the resting state.

Notably, the rest class depicts a dorso-central cluster of
electrodes in the left hemisphere, whose values are evidently
higher than those of the other electrodes across the scalp in

both the α and β frequency bands.
Statistical analysis: A statistical comparison highlighted

several differences as significant, both in group-wise and
pair-wise comparisons, and the results are shown in Figure
2. Long-term d-values are statistically significant across the
entire scalp in the θ and α bands in the group-wise Friedman
statistic results (see Fig. 2.A). A broad region in the posterior
part of the scalp is highlighted in the β frequency range, to-
gether with a cluster in most frontal electrodes. A remarkable
cluster in the left hemisphere showed significant results from
the δ band, spreading from the central and parietal lobes;
similar results were observed in the right hemisphere in the
dorso-parietal region. It should be noted that no significant
changes were detected in the γ frequency range.

Considering the post-hoc statistical comparisons shown in
Figs. 2.B, a high level of significance is enhanced in the right
portion of the panel when the resting state is compared to
the three classes of movements. In particular, this is true in
the δ and β bands. Of note, the α band is seldom involved in
these comparisons. No significant electrodes are found in the
transitives vs. tool-mediated tasks, whereas few electrodes
in the posterior hemisphere are depicted in the intransitives
vs. tool-mediated comparison. In the top-right section of
Fig. 2.B, that is, in the case of the comparison between
intransitive and transitive movements, only the γ frequency
does not show significant changes, whereas broad differences
are highlighted in other ranges. In particular, the θ and α
bands are the most involved, followed by the β band in a
broad central region, and the δ band in the left-central area.

IV. DISCUSSION AND CONCLUSION

In this preliminary study, aiming to investigate brain
dynamics properties associated with long-range components
during different upper limb movements, ARFI models were
applied to the power spectral density (PSD) time series
extracted from EEG signals. In addition to the resting state,
experimental data were grouped into three categories accord-
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Fig. 2: Bonferroni corrected
p-value topographic maps
from (A) group-wise Fried-
man test and (B) pair-wise
Wilcoxon test for paired
samples, applied to long-
memory coefficient d esti-
mates between rest, tran-
sitive, intransitive and tool
mediated classes. White ar-
eas represent not significant
regions, whereas red areas
represent statistically signif-
icant regions.

ing to the type of interaction with objects: intransitives, tran-
sitive, and tool-mediated. The main purpose of the present
study was to investigate the brain dynamics associated with
these tasks and to describe how the long-memory component,
previously studied on other physiological signals [8], [13],
and quantifiable through the d parameter, affected the EEG
dynamics.

Intransitive actions showed higher long-term components
with respect to the other two categories of tasks (i.e.,
transitives and tool-mediated tasks), which display greater
similarity to one another. This is in accordance with previous
research [4], [5], [18], and might be because the latter
involves the use of an object, whereas the former does not.
The resting state is strongly different from all the classes of
movement, especially in the δ and β frequency ranges. This
result suggests that long-term correlations in EEG signals are
more affected by the presence of an object rather than by the
type of interaction with the object itself, and further studies
are needed to investigate these changes.

Regarding power band differences, the d-value distribution
extracted in the γ band shows a clear reduction in the d-value
over the central cortex region for each class of movement,
while brain activity over the tempo-parietal cortices and
the occipital cortex was associated with higher d-values.
Intriguingly, these results are very similar to those obtained
in a previous study on EEG complexity changes across the
three categories of movement [6].

To conclude, our results highlighted that the EEG-derived
PSD time course has peculiar dynamic properties with differ-
ent long-term dependencies in motor control tasks. This work
represents a preliminary investigation, and future studies are
needed to investigate and determine how long-term EEG
power dependencies change under different physiological
conditions. We propose the long-term dependency parameter
as a prospective biomarker of EEG dynamic activity that will
prove meaningful in future research.
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