
  

 

Abstract— Sedentary behavior is considered as a major public 

health challenge, linked with many chronic diseases and 

premature mortality. In this paper, we propose a steps counting 

-based machine learning approach for the prediction of 

sedentary behavior. Our work focuses on analyzing historical 

data from multiple users of wearable physical activity trackers 

and exploring the performance of four machine learning 

algorithms, i.e., Logistic Regression, Random Forest, XGBoost, 

Convolutional Neural Networks, as well as a Majority Vote 

Ensemble of the algorithms. To train and test our models we 

employed a crowd sourced dataset containing a month’s data of 

33 users. For further evaluation, we employed a dataset 

containing 6 months of data of an additional user. The results 

revealed that while all models succeed in predicting next-day 

sedentary behavior, the ensemble model outperforms all 

baselines, as it manages to predict sedentary behavior and 

reduce false positives more effectively. On the multi-subjects test 

dataset, our ensemble model achieved an accuracy of 82.12% 

with a sensitivity of 74.53% and a specificity of 85.71%. On the 

additional unseen dataset, we achieved 76.88% in accuracy, 

63.27% in sensitivity and 81.75% in specificity. These outcomes 

provide the ground towards the development of real-life 

artificially intelligent systems for sedentary behavior prediction. 

Keywords— healthcare, sedentary behavior, wearable 

devices, machine learning 

I. INTRODUCTION 

Sedentary behavior among children and adults has become 
a matter of serious concern over the last decades. Recent 
studies have associated physical inactivity with the 
development of various physical and mental health issues such 
as obesity [1], cardiovascular disease [2], diabetes [3] and 
depression [4]. As a result, organizations and researchers 
around the world focus on providing useful recommendations 
and guidelines that encourage healthier lifestyles and promote 
physical activity. Piercy et al. [5] propose duration-based 
physical activity guidelines for children and adults, while also 
considering their health history and status. On the other hand, 
Tudor-Locke et al. [6] took advantage of objective monitoring 
methods using widely available pedometers and 
accelerometers to propose step-based guidelines for healthy 
children and adults, and individuals with disabilities and/or 
chronic diseases.  

In [7], Tudor-Locke et al. explore the harmful effects of 
prolonged sedentary behavior on health and examine its 
association with low daily step counts. Even though the lack 
of evidence prevents them from proposing a minimum daily 
step count for children and adolescents, Tudor-Locke et al. 
define a sedentary lifestyle for adults using a threshold of 

5,000 steps/day. Studies conducted by [8], [9], [10] and [11] 
have supported this threshold by demonstrating the effects of 
an abrupt transition from high to low daily step-based physical 
activity on healthy individuals. Krogh-Madsen et al. [9] have 
shown that a transition from >10,000 steps/day to <2000 
steps/day in young men for a 2-week period reduced skeletal 
muscle insulin sensitivity and induced a 7% decline in 
maximal oxygen consumption. In addition, Mikus et al. [10] 
determined that even a three-day reduction from 10,000 
steps/day to 5,000 steps/day in healthy, active individuals 
leads to substantial increases in insulin and C-peptide 
responses to the oral glucose tolerance test (OGTT). 

As it is evident, monitoring the daily step counts of 
individuals and encouraging healthy habits can potentially 
prevent the development of several life-threatening health 
issues. The wide availability and popularity of wearable 
devices for physical activity tracking reinforces physical 
activity promotion. However, to effectively intervene and 
avert cases of sedentary behavior, it is important to regularly 
look for patterns that reveal sedentary inclinations. By 
predicting days where the person is prone to demonstrate 
sedentary behavior, a physical activity monitoring system 
could be better informed beforehand and take more proactive 
decisions on when and how to support the user in remaining 
physically active. 

In this vein, we introduce a machine learning approach 
towards the prediction of sedentary behavior. By employing a 
series of machine learning algorithms, we perform 
classification on daily step count time series segments of fixed 
length that are annotated using the step count of the following 
day. To the authors’ knowledge, this is one of the first works 
on the prediction of sedentary behavior utilizing a machine 
learning approach based on step count data. In the following 
sections we present a brief theoretical background, we detail 
our implementation, we evaluate the results and, finally, we 
provide insight for future improvements. 

II. BACKGROUND AND RELATED WORK 

In the last few years, the dramatic growth of temporal data 

has led to the development of several time series classification 

(TSC) algorithms [12]-[14]. Modern approaches to TSC 

explore a variety of machine learning architectures on both 

univariate and multivariate time series datasets. 

A. Related Work 

So far, there have been only a handful of studies for the 
prediction of sedentary behavior. In 2016, He et al. [15] 
introduced an autoregressive model with maximum entropy 
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method (MEM) [16] to predict sedentary behavior using raw 
activity logs from individuals. In search for the optimal 
parameters for their model, the research group utilized the 
physical activity logs of the StudentLife dataset [17]. The 
group determined that a person’s sedentary behavior the next 
hour is correlated with their previous behaviors in the past six 
hours, and that sedentary patterns are often repeated in a daily 
and weekly basis. 

He et al. proposed a rhythm analysis-based model [18] for 
the prediction and the prevention of sedentary behavior. The 
model detects the rhythms of sedentary behavior and models 
cyclical and linear rhythms through periodic and linear 
functions, respectively. Again, through validating their model 
on the physical activity logs of the StudentLife dataset, the 
group was able to detect half-day rhythms, daily rhythms, 
weekly rhythms and biweekly rhythms among the students. 

In 2019, Ozogur et al. [19] proposed a deep learning 
approach to the prediction of sedentary behavior. Using a 6-
hour window of historical physical activity data, the team 
trained a recurrent neural network (RNN) model that predicts 
the sedentary levels of the next hour for each student in the 
StudentLife dataset. After evaluating the RNN model through 
comparing it directly to a single neuron model, they concluded 
that it performs better for most students. 

 The aforementioned approaches focus on predicting 
sedentary behavior rhythms on an hourly rather than a daily 
basis, and they are based on activity states. In contrast with the 
above works, our proposed implementation focuses on daily 
predictions of step-defined sedentary behavior using objective 
monitoring methods, while following widely accepted 
physical activity recommendations. As such, we attempt to 
prevent sedentary behaviors a day before they occur towards 
encouraging individuals to become more active. 

B. Background 

In this work, we explore the Logistic Regression, Random 
Forest [20], XGBoost [21] and CNN [13] algorithms for the 
prediction of daily sedentary behavior. Logistic Regression 
utilizes a logistic function to linearly combine independent 
variables and model their relationship with one binary 
dependent variable. Random Forest is a tree ensemble 
algorithm that creates a forest of random decision trees, fitted 
using a bagging technique. XGBoost is a recent, and rather 
popular, ensemble learning algorithm that combines the 
predictions of multiple regression trees, creating a scalable tree 
boosting system. 

 Ultimately, to obtain improved performance over the 
performance achieved by each algorithm individually, we 
explore a voting ensemble [22] of all the aforementioned 
algorithms. Ensembles typically yield better results in cases 
where there is substantial diversity between models. As a 
result, the combination of different algorithms has the 
potential to promote diversity and enhance predictions. 

III. IMPLEMENTATION 

In this section we present an overview of the dataset that we 
utilized, the data preprocessing techniques we applied on it, as 
well as the machine learning algorithms we examined and 
evaluated. 

A.  Dataset Overview 

We selected a crowd-sourced dataset [23] comprising 
physical activity data from several Fitbit users. The dataset 
contains daily logs of physical activity data, separated into 
activity intensity, walked steps and burnt calories. For the 
prediction of sedentary behavior, in our implementation we 
utilize the daily step count data of the dataset, which consist of 
31 days of logged step counts for the majority of the 33 Fitbit 
users included. We utilized only the daily step count data of 
the Fitbit dataset, considering that the rest of the data is prone 
to errors [24] and also highly correlated to the step count. 

B. Data Preprocessing 

To ensure the quality of the dataset before training and 

validating our neural network, we thoroughly inspected the 

daily step counts of each user. After arranging all user logs in 

the dataset by date, we observed that several missed a small 

number of dates that other user logs contained. In order to 

maintain uniformity across the dataset, we injected the 

missing dates of each user log as dates that contain NaN 

values. Next, we removed all daily step counts under 500, as 

we assumed that they were not appropriately counted [25]. In 

addition, to balance the distribution of the data, we capped all 

daily step counts to a maximum of 10,000 steps, i.e. the 

suggested target for healthy adults [6]. 

 To handle the missing data, i.e. 17.69% of the data, we 

calculated the moving average of each time series in the 

dataset using a 7-day sliding window. We set the minimum 

required number of observations with non-missing values in 

the window to 1, so that, otherwise, the moving average 

returns missing values. After the calculation, we replaced the 

missing data using the corresponding values of the moving 

average. Any missing data that the moving average was 

unable to calculate were replaced using the mean value of 

each time series. 

 To approach the prediction of sedentary behavior through 

exploiting the historical data of users, we converted each time 

series to sequences of 7 consecutive days, using a sliding 

window. We selected a window size of 7 to include potential 

weekly seasonality. Since each user’s time series consists of 

31 days, the resulting number of windows for each user was 

24. As target data, we selected the next day for each sequence 

and labeled it as sedentary, if it did not surpass the 5,000 

steps/day threshold, or as non-sedentary if it did. 

 Finally, we created a training and a test set by splitting each 

time series. Specifically, in the training set we included the 

first 14 windows and target days of each time series and in the 

test set we included the remaining 10 windows and target 

days. This way we involve all users in the training and the 

evaluation of our models. 

C. Logistic Regression, Random Forest and XGBoost 

We approached the prediction of sedentary behavior as a 

binary time series classification problem. Thus, to classify the 

input sequences we examined several machine learning 

algorithms, one of them being Logistic Regression. We fitted 

a Logistic Regression model using the training set discussed 

in the previous subsection. In addition, due to class imbalance 
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that resulted from the shortage of sedentary target days in the 

training set, we calculated the class weights using (1), where 

𝑊𝑐𝑙𝑎𝑠𝑠 is the weight of the class, 𝑠𝑡𝑜𝑡𝑎𝑙  is the total number of 

samples, 𝑠𝑐𝑙𝑎𝑠𝑠 is the number of samples of the class and 𝑛 is 

the number of classes. Finally, we applied the class weights 

to the model before fitting the training data. 

                                    𝑊𝑐𝑙𝑎𝑠𝑠 =
𝑠𝑡𝑜𝑡𝑎𝑙

𝑠𝑐𝑙𝑎𝑠𝑠∗𝑛
                              (1) 

Using the aforementioned training data, we additionally fitted 

a Random Forest model of 1,000 decision trees and an 

XGBoost model of 100 boosting rounds. We applied the class 

weights calculated using (1) to the Random Forest model 

before the training process. Similarly, before training the 

XGBoost model, we applied to it the ratio of the negative class 

samples to the positive class samples. 

D. Convolutional Neural Network 

To examine the results of a more advanced approach, we 

designed a neural network consisting of two 1D convolutional 

layers, a flattening layer and an output dense layer of a single 

neuron, as shown in Fig. 1. 

Figure 1.  The architecture of the Convolutional Neural Network. 

The input convolutional layer contains 64 filters with a 

kernel size of 3x3 and acts as a downsampling layer by sliding 

the convolution window 7 elements at a time. The following 

convolutional layer also contains 64 filters with a 3x3 sized 

kernel but slides the convolution window 1 element at a time. 

To improve our network’s performance, we applied the ReLU 

activation function only to the inner convolutional layer, 

following the design proposed by Zhao et al. [26]. Next, we 

flattened the window of the inner convolutional layer and we 

passed the result to the dense layer, where the sigmoid 

activation function was applied, to transform the output to a 

probability. 

 We trained the neural network using the aforementioned 

training set. During training, we selected a batch size of 16 

samples/step and a 10% validation split. We used the Adam 

optimizer with a learning rate of 10-4, the binary cross-entropy 

loss function and an early stopping mechanism. In addition, 

due to the imbalance between the two classes in the training 

data, we calculated weights for each class using (1) and 

applied them on the loss function. 

E. Majority Vote Ensemble 

To evaluate a combination of all models, we developed a 

Majority Vote Ensemble. The ensemble determines the output 

result by taking as input the labeled results of each model and 

counting the votes for each class. In the case of a draw, the 

input is labeled as sedentary, as obtaining some false positive 

results is less crucial than obtaining false negative results. The 

architecture of the ensemble is shown in Fig. 2. 

Figure 2.  The architecture of the Majority Vote Ensemble. 

IV. RESULTS 

In this section we present and discuss the results of 
evaluating our models on the remaining unseen data of the 
dataset, i.e. the remaining 10 sequences of each user’s time 
series. Furthermore, we evaluate our models on an unseen 
dataset of 200 days from an additional source. 

A. Dataset Users 

To properly evaluate the performance of our models, we 
tested their predictions on the remaining sequences from each 
user’s time series. In order to optimize each model’s results, 
under the assumption of equal misclassification cost, we 
selected a probability threshold using Youden’s index. Next, 
we applied the thresholds to each model’s output probabilities 
to generate the labeled results. In tables I and II, we 
respectively present the selected probability thresholds and the 
sensitivity, specificity and accuracy scores that each model 
achieved. 

TABLE I.  THE MODELS’ PROBABILITY THRESHOLDS. 

Model Threshold 

Logistic Regression 0.8687 

Random Forest 0.2870 

XGBoost 0.4292 

CNN 0.5872 
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TABLE II.  THE MODELS’ PERFORMANCE ON MULTIPLE USERS. 

Model Sensitivity Specificity Accuracy 

Logistic Regression 0.6698 0.8929 0.8212 

Random Forest 0.7547 0.8348 0.8091 

XGBoost 0.6887 0.8661 0.8091 

CNN 0.6981 0.8705 0.8152 

Majority Vote 
Ensemble 

0.7453 0.8571 0.8212 

We observed that the Random Forest model achieved the 

highest sensitivity score but the lowest score in specificity. In 

contrast, the Logistic Regression model achieved the highest 

specificity score but the lowest sensitivity score. The 

XGBoost and CNN models attempted to balance their 

sensitivity and specificity scores, however with a noticeable 

incline in specificity. Finally, even though its scores did not 

exceed the highest measured scores, the Majority Vote 

Ensemble balanced the results in the most efficient manner. 

Our models are capable of identifying patterns and 

correctly classifying sedentary behavior in most cases. 

However, several users engage in sedentary behavior in a 

random manner and without any prior indication. 

Specifically, we noticed a number of sequences in the test data 

that, even though the included step counts were non-

sedentary, the target step count was sedentary. To 

demonstrate this, in Fig. 3 we present examples of time series 

with correctly and incorrectly classified sedentary days by the 

CNN model. The blue line signifies the time series of a user, 

while the dashed vertical purple line separates the target days 

in the training set, left of the separator, from the target days in 

the test set, right of the separator. The green dots mark the 

correctly classified sedentary days, i.e. the true positives, and 

the red dots mark the incorrectly classified sedentary days, i.e. 

the false negatives. 

Figure 3.  Examples of correct and incorrect classifications. 

B. Additional User 

To further explore the performances of all models, we 
evaluated their predictions on an additional dataset. The 
dataset contained Fitbit Charge logged daily step counts from 
an additional user in course of 200 days. To prepare the dataset 
for our models, we applied the preprocessing pipeline we 
described in the previous section. Furthermore, to obtain the 
labeled results, we applied the probability thresholds we 
calculated using the original test dataset. In table III, we 
present the sensitivity, specificity and accuracy scores that 
each model achieved on these additional data. 

TABLE III.  THE MODELS’ PERFORMANCE ON THE ADDITIONAL USER. 

Model Sensitivity Specificity Accuracy 

Logistic Regression 0.5714 0.9051 0.8172 

Random Forest 0.6122 0.8248 0.7688 

XGBoost 0.6122 0.7956 0.7473 

CNN 0.5918 0.8102 0.7527 

Majority Vote 

Ensemble 
0.6327 0.8175 0.7688 

 
The results showed that our implementations succeeded in 

detecting sedentary behavior a day earlier whenever sedentary 
patterns are available. In detail, the Logistic Regression model 
achieved the highest specificity score but the lowest score in 
sensitivity. The Random Forest, XGBoost and CNN models 
achieved quite similar results, attempting to balance both 
scores. And finally, the Majority Vote Ensemble achieved the 
highest sensitivity score, surpassing all baseline models, and a 
fairly high specificity score. 

V. DISCUSSION 

In this paper we proposed a machine learning approach to 

predict sedentary behavior using historic daily steps count 

data originating from wearable devices. Considering that 

physical inactivity is a major public health challenge linked 

with higher morbidity and mortality, the implementation of 

new ICT technologies is required to facilitate its prevention. 

Consequently, this paper focuses on predicting physical 

inactivity using ambient intelligent systems, as a resolution to 

this rising issue. 

Surprisingly, even though sedentary behavior is an 

important public health challenge, the predictive capabilities 

of relevant ICT systems have not been thoroughly 

investigated, nor exploited, thereby motivating the current 

work. Our outcomes, following the experimentation with 

different machine learning algorithms, provide an important 

ground towards the development of real-life artificially 

intelligent systems for sedentary behavior prediction on a 

large-scale. 

In search for the most optimal prediction technique, we 

experimented with 4 machine learning algorithms and their 

ensemble. The results on two different test datasets showed 

that the ensemble outperforms the baseline models by 

balancing the metric scores more efficiently and achieving 
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higher scores in some cases. This finding is in line with 

outcomes of previous studies in other areas of healthcare, 

which showed that ensemble models outperform baseline 

models. 

The ensemble’s performance improvement is a product of 

the diverse ways the models fit to the data. In our case, this 

can be observed in the results of the baseline models, 

presented in tables II and III. As expected, models with higher 

sensitivity scores perform worse in specificity, while models 

with higher specificity scores obtain lower sensitivity, 

compared to the other models. 

The limitations we encountered throughout our 

implementation were a consequence of the quality of the 

training data and the similarity between the two classes. Due 

to the presence of missing values in the data, we included a 

data augmentation process in the preprocessing pipeline. 

However, even though augmentation can be considerably 

beneficial, it cannot be a replacement for the lost information. 

Furthermore, through manually inspecting the data, we 

concluded that the extent of the class similarity can introduce 

confusion to the models and hinder their performance. Thus, 

we experimented with various machine learning algorithms 

since their diversity is a potential solution to the problem. 

For future work, we intend to test our approach on 

additional datasets using also additional machine learning 

algorithms. Furthermore, we will examine model 

personalization techniques using these datasets, for 

performance improvements. Finally, we would like to explore 

additional features that could enhance the predictive 

capabilities of our approach. 

In conclusion, we presented a machine learning modeling 

approach to predict sedentary behavior based on day-to-day 

step count data. Our work, based on evaluation outcomes 

from two different test datasets, provides evidence that such 

predictive capabilities are feasible. 
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