
  

  

Abstract – Robotic exoskeletons require human control and deci-
sion making to switch between different locomotion modes, which 
can be inconvenient and cognitively demanding. To support the de-
velopment of automated locomotion mode recognition systems (i.e., 
intelligent high-level controllers), we designed an environment 
recognition system using computer vision and deep learning. Here 
we first reviewed the development of the “ExoNet” database – the 
largest and most diverse open-source dataset of wearable camera im-
ages of indoor and outdoor real-world walking environments, which 
were annotated using a hierarchical labelling architecture. We then 
trained and tested the EfficientNetB0 convolutional neural network, 
which was optimized for efficiency using neural architecture search, 
to forward predict the walking environments. Our environment 
recognition system achieved ~73% image classification accuracy. 
These results provide the inaugural benchmark performance on the 
ExoNet database. Future research should evaluate and compare dif-
ferent convolutional neural networks to develop an accurate and real-
time environment-adaptive locomotion mode recognition system for 
robotic exoskeleton control. 

I. INTRODUCTION 

The state-of-the-art in robotic exoskeleton control for hu-
man locomotion involves a hierarchical architecture, including 
high, mid, and low-level controllers [1]-[2]. The high-level 
controller is responsible for determining the user’s locomotor 
intent (e.g., climbing stairs, sitting down, or level-ground 
walking). The mid-level controller converts the locomotor ac-
tivity from the high-level controller into mode-specific refer-
ence trajectories (i.e., the desired device state for each locomo-
tion mode); this control level typically includes individual fi-
nite-state machines with discrete mechanical impedance pa-
rameters like stiffness and damping coefficients, which are 
manually tuned for different locomotor activities. The low-
level controller calculates the error between the measured and 
desired device states and commands the robotic actuators to 
minimize the error using reference tracking and closed-loop 
feedback control [1]-[2]. 

High-level transitions between different locomotor activi-
ties remains a significant challenge. Most commercial exoskel-
etons require users to perform exaggerated movements or use 
hand controls to manually switch between locomotion modes 
[1]-[2]. Although accurate, such manual high-level control and 
decision making can be inconvenient and cognitively demand-
ing. Researchers have been working on developing automated 
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locomotion mode recognition systems using pattern recogni-
tion algorithms and data from wearable sensors like inertial 
measurement units (IMUs) and surface electromyography 
(EMG) [1]-[2]. Whereas mechanical and inertial sensors re-
spond to the user’s movements, the electrical potentials of bi-
ological muscles, as recorded using surface EMG, precede 
movement initiation and thus could predict locomotion mode 
transitions with small prediction horizons. Several researchers 
have combined mechanical sensors with EMG for automated 
intent recognition [3]-[5]; this neuromuscular-mechanical data 
fusion has shown to improve the locomotion mode recognition 
accuracies and decision times compared to implementing ei-
ther system individually. However, these measurements are 
still user-dependent, and surface EMG require calibration and 
are susceptible to fatigue, motion artifacts, changes in elec-
trode-skin conductivity, and crosstalk between muscles [1]. 

Information about the walking environment can be used to 
supplement automated locomotion mode recognition systems 
based on neuromuscular-mechanical data fusion. Environment 
sensing would precede modulation of the user’s muscle acti-
vations and/or walking biomechanics, therein allowing for 
more accurate and robust automated high-level transitions be-
tween different locomotor activities. 
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Fig. 1 Photograph of the lead author walking with our robotic lower-
limb exoskeleton with environment sensing superimposed. 
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Studies have shown that supplementing an intelligent high-
level controller with environment information can improve the 
classification accuracies and decision times compared to ex-
cluding the environmental context [4]-[5]. Common wearables 
used for environment sensing are radar detectors [6], laser 
rangefinders [4]-[5], [7], RGB cameras [8]-[13], and 3D depth 
cameras [14]-[19] (example shown in Fig. 1). 

For classifying images of walking environments, research-
ers have used support vector machines [16]-[17] and convolu-
tional neural networks (CNNs) [8], [10], [12]-[13], [18]-[19]. 
Although CNNs typically outperform support vector machines 
for image classification, deep learning requires significant and 
diverse training data to prevent overfitting and promote gener-
alization. To date, researchers have each individually collected 
training data to develop their image classification algorithms. 
These repetitive measurements are time-consuming and inef-
ficient, and individual private datasets have prevented compar-
isons between classification algorithms from different re-
searchers [20]. These limitations motivated our recent decision 
to develop the “ExoNet” database – the largest and most di-
verse open-source dataset of wearable camera images of real-
world walking environments. In this study, we first reviewed 
the development of ExoNet. We then trained and tested a state-
of-the-art deep convolutional neural network on the ExoNet 
database for large-scale image classification (i.e., state estima-
tion) of the walking environments, therein providing the inau-
gural benchmark performance.     

II. METHODS 

A. Experimental Dataset 
One subject (without wearing an exoskeleton) was instru-

mented with a wearable smartphone camera system (iPhone 
XS Max) (Fig. 2). Unlike limb-mounted systems [6]-[12], 
[16]-[17], [19], our chest-mounted camera can provide more 
stable video recording and allow users to wear pants and 
dresses without obstructing the field-of-view. The chest-
mount height was ~1.3 m from the ground when the subject 
stood upright. The smartphone weighs ~0.21 kg and has an 
onboard rechargeable lithium-ion battery, 512-GB of memory 

storage, and a 64-bit ARM-based integrated circuit (Apple 
A12 Bionic) with a six-core CPU and four-core GPU. The rel-
atively lightweight and unobtrusive nature of the wearable 
camera system allowed for unimpeded locomotion. Ethical re-
view and approval were not required for this study according 
to the University of Waterloo Office of Research Ethics. 

Whereas previous studies have been limited to controlled 
indoor environments and/or prearranged walking circuits [3]-
[9], [14]-[15], [18]-[19], our subject walked around unknown 
outdoor and indoor real-world environments while collecting 
images with occlusions, signal noise, and intraclass variations. 
We collected data at various times throughout the day to in-
clude different lighting conditions. The field-of-view was 1-5 
m ahead of the subject. The camera’s pitch angle slightly dif-
fered between data collection sessions. Images were sampled 
at 30 Hz with 1280×720 resolution. We recorded over 52 hours 
of video, amounting to ~5.6 million images (Fig. 2). Data were 
collected during the summer, fall, and winter seasons to incor-
porate different weathered surfaces like snow, grass, and mul-
ticolored leaves. This image database, called “ExoNet”, was 
deposited in the IEEE DataPort repository and is publicly 
available for download. The file size of the uncompressed vid-
eos is ~140 GB. See [11] for the original ExoNet paper.  

Since there were minimal differences between consecutive 
images sampled at 30 Hz, we labelled the ExoNet images at 5 
frames/second. Approximately 923,000 images were manually 
annotated using a 12-class hierarchical labelling architecture 
(Fig. 2). The dataset included: 31,628 images of “incline stairs 
transition wall/door” (I-T-W); 11,040 images of “incline stairs 
transition level-ground” (I-T-L); 17,358 images of “incline 
stairs steady” (I-S); 28,677 images of “decline stairs transition 
level-ground” (D-T-L); 19,150 images of “wall/door transition 
other” (W-T-O); 36,710 images of “wall/door steady” (W-S); 
379,199 images of “level-ground transition wall/door” (L-T-
W); 153,263 images of “level-ground transition other” (L-T-
O); 26,067 images of “level-ground transition incline stairs” 
(L-T-I); 22,607 images of “level-ground transition decline 
stairs” (L-T-D); 119,515 images of “level-ground transition 
seats” (L-T-E); and 77,576 images of “level-ground steady” 

 

Fig. 2 Review of the ExoNet database, including (left) the wearable camera system used for large-scale data collection; (middle) the high-resolution 
RGB images of walking environments; and (right) the 12-class hierarchical labelling architecture. For more information, see the original paper [11]. 
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(L-S). These class labels were selected to involve the different 
walking environments from the data collection. We included 
the other class to maintain image classification performance 
when unlabeled environments and/or objects like pedestrians, 
cars, and bicycles were observable. 

Inspired by previous work [3]-[5], [8], our labelling archi-
tecture included both steady (S) and transition (T) states. A 
steady state describes an environment where an exoskeleton 
user would continue to perform the same locomotion mode 
(e.g., an image showing only level-ground terrain). In contrast, 
a transition state describes an environment where an exoskel-
eton high-level controller might switch between different lo-
comotion modes (e.g., an image showing level-ground terrain 
and incline stairs). Manually labelling these transition states 
was relatively subjective. For example, an image showing 
level-ground terrain was labelled “level-ground transition in-
cline stairs” (L-T-I) when an incline staircase was approxi-
mately within the field-of-view. Similar labelling principles 
were applied to transitions to other conditions. 

B. Convolutional Neural Network 
We used TensorFlow 2.3 and the Keras functional API to 

train and test a convolutional neutral network for environment 
classification. During data preprocessing, the images were 
cropped to an aspect ratio of 1:1 and downsampled to 256x256 
using bilinear interpolation. Random crops of 224x224 were 
used as inputs to the network; this method of data augmenta-
tion helped further increase the sample diversity. We used the 
EfficientNetB0 convolutional neural network developed by 
Google [21] for image classification (Table 1). Unlike previ-
ous studies that used statistical pattern recognition or support 
vector machines [14]-[17], deep learning can automatically 
and efficiently learn the optimal image features from the train-
ing data. The EfficientNetB0 architecture was designed using 
a multi-objective neural architecture search that optimized 
both the classification accuracy and computational complexity 
[21]; these operational design features are especially important 
for onboard, real-time exoskeleton control. The final densely 
connected layer of the EfficientNetB0 architecture was modi-
fied by setting the number of output channels equal to the num-
ber of environment classes. Softmax was used to estimate the 
probability distribution (i.e., scores) for each environment. The 
network contained ~4 million parameters and ~391 million 
multiply-accumulate operations (MACs), which are repre-
sentative of the architectural and computational complexities, 
respectively. 

The ExoNet images were split into training (89.5%), vali-
dation (3.5%), and testing (7%) sets, the proportions of which 
are consistent with ImageNet [22]. We experimented with 
transfer learning of pretrained weights from ImageNet [22] but 
found no additional performance benefit. Dropout regulariza-
tion was applied before the final dense layer to prevent over-
fitting during training such that the network weights were ran-
domly dropped (i.e., activations set to zero) at a rate of 0.5. 
Images were also randomly flipped horizontally during train-
ing to increase stochasticity and promote generalization. We 
trained the network for 40 epochs using a batch size and initial 
learning rate of 128 and 0.001, respectively; these hyperpa-
rameters were experimentally tuned to maximize performance 
on the validation set (Fig. 3). The learning rate was reduced 
during training using a cosine weight decay schedule. We cal-
culated the sparse categorical cross-entropy loss between the 
labelled and predicted classes and used the Adam optimizer 

 
Fig. 3 The loss and image classification accuracies during training and 
validation on the ExoNet database using the EfficientNetB0 network.  
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Table 1. The EfficientNetB0 convolutional neural network used for image classification (i.e., state estimation) of the walking environments, including 
the number of layers, parameters, output channels, and input resolution for each stage. For more information on the architecture design, see [21].  

Network Stage Operator Input Resolution Output Channels Number of Layers  Number of Parameters 
1 Conv3x3 224x224x3 32 1 999 
2 MBConv1, 3x3 112x112x32 16 1 1,544 
3 MBConv6, 3x3 112x112x16 24 2 17,770 
4 MBConv6, 5x5 56x56x24 40 2 48,336 
5 MBConv6, 3x3 28x28x40 80 3 248,210 
6 MBConv6, 5x5 14x14x80 112 3 551,116 
7 MBConv6, 5x5 14x14x112 192 4 2,044,396 
8 MBConv6, 3x3 7x7x192 320 1 722,480 
9 Conv1x1 and Pooling  7x7x320 1280 1 414,700 

10 Dense 1280 12 1 15,372 
 

4633



  

[23], which computes gradients using momentum and an adap-
tive learning rate, to update the network weights and minimize 
the loss function. During testing, we used a single central crop 
of 224x224. Training and inference were both performed on a 
Tensor Processing Unit (TPU) version 3-8 by Google Cloud; 
these customized chips can allow for accelerated CNN com-
putations with less power consumption.      

III. RESULTS 

The image classification accuracies on the training and val-
idation sets were 81.2% and 72.6%, respectively. Table 2 
shows the multiclass confusion matrix, which visually illus-
trates the CNN classification performance during inference. 
The matrix columns and rows are the predicted and labelled 
classes, respectively. The diagonal elements are the classifica-
tion accuracies for each environment class, known as true pos-
itives, and the nondiagonal elements are the misclassification 
percentages. Our environment recognition system achieved 
73.2% image classification accuracy on the testing set, that be-
ing the percentage of true positives (i.e., 47,265 images) out of 
the total number of images (i.e., 64,568 images). 

The network most accurately predicted the “level-ground 
transition wall/door” (L-T-W) class with 86.5% accuracy, fol-
lowed by “level-ground steady” (L-S) at 79.9% and “de-cline 
stairs transition level-ground” (D-T-L) at 78.8%. These results 
could be attributed to the class imbalances among the training 
data (i.e., there were significantly more images of L-T-W en-
vironments compared to the other classes). However, some 
classes with limited images showed relatively good classifica-
tion performance. For instance, the “incline stairs transition 
level-ground” (I-T-L) class comprised only 1.2% of the Ex-
oNet database but achieved 77.9% classification accuracy. The 
least accurate predictions were for the environment classes 
with other features – “wall/door transition other” (W-T-O) at 
43.2% and “level-ground transition other” (L-T-O) at 47.5%. 
The average inference runtime was ~2.5 ms/image on the 
Cloud TPU using a batch size of 8. 

IV. DISCUSSION 

Inspired by the human vision-locomotor control system, 
computer vision can provide important environmental context 
and features for robotic exoskeleton control. However, small-
scale and private training datasets have impeded the develop-
ment of image classification algorithms for terrain recognition 
[20]. To address these limitations, we recently developed the 

“ExoNet” database - the largest and most diverse open-source 
dataset of wearable camera images of walking environments 
[11]. Unparalleled in both scale and diversity, ExoNet contains 
over 5.6 million images of indoor and outdoor real-world en-
vironments, of which ~923,000 images were annotated using 
a 12-class hierarchical labelling architecture; these features are 
important since deep learning requires significant and diverse 
training data. In this study, we trained and tested a state-of-the 
art deep convolutional neural network (i.e., EfficientNetB0 
[21]) on the ExoNet database to predict the walking environ-
ments. These results provide the inaugural benchmark perfor-
mance for future comparisons. We used EfficientNetB0 since 
the architecture was optimized for classification accuracy and 
computational complexity, the features of which are pertinent 
to onboard real-time inference for robotic exoskeleton control. 

Our environment recognition system achieved ~73% clas-
sification accuracy on ExoNet. However, for environment-
adaptive control of robotic exoskeletons, higher classification 
accuracy is desired since even rare misclassifications can 
cause loss-of-balance and injury [24]. Future work should con-
sider using sequential data to improve the classification accu-
racy and robustness. Sequential images could be classified us-
ing majority voting [5], [16]-[17] or deep learning models like 
recurrent neural networks (RNNs) [18]. RNNs process sequen-
tial inputs while maintaining an internal hidden state vector 
that implicitly contains temporal information. However, train-
ing RNNs can be challenging due to exploding and vanishing 
gradients [25]. While these networks were designed to learn 
long-term dependencies, research has shown that they struggle 
with storing sequential information over long periods [25]. To 
mitigate this issue, RNNs can be supplemented with an explicit 
memory module like a long short-term memory (LSTM) net-
work. A recent study [18] showed that fusing sequential deci-
sions using recurrent neural networks or LSTM networks sig-
nificantly outperformed CNNs alone for image classification 
(i.e., state estimation) of walking environments. However, us-
ing sequential data for environment classification can lead to 
longer decision times and thus impede real-time exoskeleton 
control.  

A potential limitation of our ExoNet database is the 2D na-
ture of the environment information. Whereas an RGB camera 
measures only light intensity information [8]-[13], depth cam-
eras can also provide distance measurements [14]-[19]. Depth 
cameras work by emitting infrared light and calculating dis-
tances by measuring the time-of-flight between the camera and 

Table 2. The multiclass confusion matrix for the EfficientNetB0 network showing the image classification accuracies (%) during inference on the 
ExoNet database. The matrix columns and rows are the predicted and labelled classes, respectively. The abbreviations are described in the text.  

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 78.8 0.6 0.3 0.0 0.0 0.0 1.0 4.5 10.6 0.2 2.6 1.4 
W-S 0.2 72.1 9.2 0.0 0.3 0.2 0.0 0.3 15.2 0.1 1.9 0.5 
W-T-O 0.4 21.9 43.2 0.0 0.4 0.2 0.1 0.1 19.2 0.4 8.8 5.5 
I-S 0.0 0.3 0.1 62.1 33.9 1.9 0.0 0.0 0.5 0.6 0.5 0.0 
I-T-W 0.0 2.0 0.7 16.8 69.0 2.8 0.0 0.2 1.5 5.8 0.6 0.6 
I-T-L 1.0 0.5 0.2 2.5 5.7 77.9 2.2 0.2 6.4 1.5 1.2 0.7 
L-S 0.1 0.4 0.0 0.0 0.0 0.1 79.9 0.3 11.9 0.6 6.4 0.2 
L-T-D 5.5 0.4 0.6 0.0 0.3 0.1 1.0 53.3 28.3 2.8 4.3 3.6 
L-T-W 0.3 1.5 0.4 0.0 0.0 0.1 3.7 0.4 86.5 0.3 4.4 2.3 
L-T-I 0.1 1.0 0.2 1.0 3.9 0.4 3.8 0.7 23.3 49.1 12.1 4.4 
L-T-O 0.3 0.6 1.1 0.0 0.1 0.1 13.7 0.5 28.8 0.7 47.5 6.6 
L-T-E 0.3 0.5 0.3 0.0 0.0 0.1 0.8 0.5 14.0 0.6 10.1 72.7 
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physical environment. Depth sensing can extract environmen-
tal features like step height and width, which could improve 
the mid-level exoskeleton control. However, depth measure-
ment accuracy typically de-grades in outdoor lighting condi-
tions and with increasing distance [16]-[17]. Most environ-
ment recognition systems using depth cameras have been 
tested in controlled indoor environments and/or have had lim-
ited capture volumes (i.e., 1-2 m of maximum range imaging) 
[14]-[17]. Moreover, the application of depth cameras for ac-
tive environment sensing would require robotic exoskeletons 
to have onboard microcontrollers with high computing power 
and low power consumption; the current embedded systems 
would need significant modifications to support real-time pro-
cessing of depth images [16]. These limitations motivated our 
decision to use RGB images.  

Lastly, since the environmental context does not explicitly 
represent the user’s locomotor intent, data from computer vi-
sion should supplement, rather than replace, the locomotion 
mode control decisions based on information from surface 
EMG and/or mechanical and inertial sensors. For instance, im-
ages from our wearable smartphone camera could be fused 
with its onboard IMU measurements for high-level exoskele-
ton control. If an exoskeleton user unexpectedly stops before 
ascending an incline staircase; the acceleration data would in-
dicate static standing rather than stair ascent, despite the stair-
case being accurately detected within the field-of-view. The 
onboard IMU measurements could also be used to control the 
camera’s sampling rate [7]-[8]. Whereas fast walking can ben-
efit from higher sampling rates for continuous classification, 
standing still does not necessarily require environment infor-
mation and thus the camera could be powered down, or the 
sampling rate decreased, to reduce the computational and 
memory storage requirements. The optimal method for fusing 
the acceleration data with images for environment-adaptive 
control of robotic exoskeletons remains to be determined. 
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