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Abstract— Consumer neuroscience is a rapidly emerging
field, with the ability to detect consumer attitudes and states
via real-time passive technologies being highly valuable. While
many studies have attempted to classify consumer emotions and
perceived pleasantness of olfactory products, no known machine
learning approach has yet been developed to directly predict
consumer reward-based decision-making, which has greater be-
havioral relevance. In this proof-of-concept study, participants
indicated their decision to have fragrance products repeated
after fixed exposures to them. Single-trial power spectral density
(PSD) and approximate entropy (ApEn) features were extracted
from EEG signals recorded using a wearable device during
fragrance exposures, and served as subject-independent inputs
for 4 supervised learning algorithms (kNN, Linear-SVM, RBF-
SVM, XGBoost). Using a cross-validation procedure, kNN
yielded the best classification accuracy (77.6%) using both PSD
and ApEn features. Acknowledging the challenging prospects of
single-trial classification of high-order cognitive states especially
with wearable EEG devices, this study is the first to demonstrate
the viability of using sensor-level features towards practical
objective prediction of consumer reward experience.

Index Terms—Consumer Neuroscience, Reward Decision-
Making, EEG, Olfaction, Machine Learning

I. INTRODUCTION

Consumer neuroscience is an emerging interdisciplinary
field that taps on neuroscientific knowledge and methods
to glean deeper insights into the needs, preferences and
choices of consumers. One frontier is the development of
real-time passive technologies which can objectively detect
consumers’ attitudes and states that influence their product
evaluations and behaviors. Interest for such technologies has
been gaining traction, since it is known that classical rating
scales widely-used in market research may fail to capture
consumer’s true preferences and intentions [1].

One popular approach to studying consumer’s evaluation
of the product is to measure emotions and perceived pleasant-
ness. Many studies have employed electroencephalography
(EEG) [2], [3], electrocardiography (ECG) [3], electroder-
mal recordings [4] and facial expression monitoring [5] to
objectively measure neural and autonomic responses that
may predict subjective pleasantness and emotions. Among
these, EEG has stood out as the most popular and reliable
choice, as it is the most accurate in measuring the brain’s
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hedonic and affective responses [6]. Other modalities depend
on downstream effects that may be less reliable due to
physiological noise (for periphery measures) [3], or socio-
cultural influences (for facial emotion measures) [7].

However, it is known from past literature that positive
hedonic valuation and emotions do not necessarily translate
to strong purchase intention, alluding to complex interactions
with other determinants that contribute to consumer decision-
making [8]. Therefore, to better predict consumers’ purchase
behavior, it is more advantageous to detect cognitive states
that directly relate to their product-based decision-making.

Such decisions are driven not simply by ’liking’ of the
product, but the feeling of ’wanting’ it, which taps on brain
networks closely associated with reward appraisal [9]. While
these dopaminergic reward networks primarily encompass
subcortical circuitries linking the ventral striatum, basal gan-
glia and amygdala, they also project out to cortical regions
such as the orbitofrontal cortex and the cingulate cortices that
process reward-driven weighing of decisions that precipitates
behavioral action [9]. Hence, EEG is theoretically capable
of tracking consumer reward-based decisions using signals
originating from these cortical substrates during exposure to
the product. No known study has yet developed a machine
learning approach towards practically achieving this goal,
and so the current research pursued this direction.

The aim of this study is therefore to assess the feasi-
bility of EEG-based prediction of consumer reward-based
decisions. Here, participants were exposed to various fra-
grance products, immediately after which they indicated their
decision to want to have the sample repeated; this metric
reflects reward-driven evaluations [10]. Sensor-level features
such as power spectral density and approximate entropy were
extracted from the EEG signals, and used to train 4 popular
supervised learning algorithms (kNN, Linear-SVM, RBF-
SVM, XGBoost). Classification performance was assessed
via a cross-validation procedure.

II. DATA COLLECTION

A. Experiment Procedures

Fourteen right-handed female participants of Chinese eth-
nicity (aged 21-45) at the National University of Singapore
(NUS) took part in the research. Experimental procedures
have been approved by the NUS Institution Review Board.
Demographic factors (gender, handedness and ethnic back-
ground) were kept constant to minimize extraneous affective
and neural differences across participants [11], [12].
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In this study, the participants were presented with fra-
grance product samples in 8-seconds trials while fixating on
a fixation cross, immediately after which they rated sample
pleasantness (11-point scale), and indicated their decision to
want to have the sample repeated, on a 5-point balanced
scale (i.e. a reward-repetition decision scale: Strongly No,
No, Neutral, Yes, Strongly Yes). This scale is a measure of
reward-based decision-making, adapted from neuroimaging
studies on reward, e.g. [10]. Participants’ responses did not
actually change the schedule of sample presentations. To
mitigate olfactory fatigue, a coffee odorant was presented
to subjects after they made their responses and short breaks
were administered between all trials.

Testing occurred over three consecutive testing days, with
forty trials of sample presentations per day. Four samples
were used, which were identified to be samples with the
highest and lowest familiarity ratings out of 6 commercial
products in a pre-screening procedure. Familiarity was cho-
sen as the variable for stimulus selection, because it relates to
how accepting individuals will be of the stimulus in question
[13], thus providing inter-stimulus variability that can give
rise to a distribution in reward-based decision responses.

B. EEG Acquisition and Analysis

1) Apparatus: EEG signals were recorded with the CGX
Quick-20 headset (Cognionics; CA, USA), which has a 19
dry-sensor montage conforming to the International 10-20
System, in addition to forehead grounds and a bilateral
earlobe reference. Impedances were maintained under 2,500
kΩ. EEG data were recorded at a 500-Hz sampling rate
and digitized for wireless transmission to the CGX Data
Acquisition software on the host computer for storage.

2) Preprocessing: EEG signals were passed through an
automated preprocessing pipeline with the following compo-
nents: Chevbyshev band-pass filter (Order 6; 0.3 to 40 Hz),
resampling to 250 Hz, common average referencing, epoch
extraction (8-second trials), and independent component
analysis (ICA). The cleaned EEG signal was reconstructed
after automated detection and rejection of artifact-related
components using the ADJUST algorithm [14].

3) Feature Extraction: All features were extracted from
the first 4 seconds of the trial, corresponding to the first
sniff cycle. The preprocessed EEG signal underwent band-
pass filtering to obtain signals in the theta (θ: 4- 8 Hz),
alpha (α: 8 - 12 Hz), beta (β: 12 - 30 Hz) and gamma (γ:
30- 40 Hz) bands. Relative power spectral density (PSD)
across the 4 frequency bands were estimated using Welch’s
method. Approximate entropy (ApEn)–which quantifies the
unpredictability of signal fluctuations–was calculated for
each frequency band, according to ref. [15], using window
size, m = 2, and noise filtering level, r = 0.2×SD of signal
amplitude values.

III. SUPERVISED LEARNING

A. Supervised Learning Algorithms

1) k-Nearest Neighbors: k-Nearest Neighbors (kNN) is
a model-free classification method, in which a test instance

is assigned the label belonging to the majority of k closest
instances in terms of proximity within the feature space. In
this study, the distance metric d is Euclidean distance, and
label voting is inversely distance-weighted. k was subjected
to tuning.

2) SVM with Linear Kernel: The classical support vector
machine (SVM) with the linear kernel finds the linear hy-
perplane in the feature space that best separates classes, with
support vectors that define the margin. The C regularization
parameter controls the tolerance of training misclassifcation
to prevent overfitting, and was subjected to tuning.

3) SVM with Radial Basis Function Kernel: SVM is often
implemented with the radial basis function (RBF) kernel that
can map onto a infinitely multidimensional space. In this
study, we set γ = 1/(N ×σ2), where N is the total number
of features and σ2 is the variance of the feature dataset. C
was subjected to tuning.

4) XGBoost: Extreme Gradient Boosting (XGBoost) is
an ensemble learning algorithm that relies on gradient tree
boosting, along with additional regularizing components
(gain threshold γ and L2 regularization parameter λ) that
control tree building and minimize over-fitting [16]. Many
optimization features (e.g. approximate greedy split-finding,
cache-aware access) help XGBoost learn efficiently with
large datasets. In this study, we set γ = 1 and learning rate
ε = 0.1. λ was subjected to tuning.

B. Input Preparation

From the 1680 trial responses collected, 450 trials (26.8%)
with ”Neutral” responses were removed as the participants
did not have a clear decision. Of the remaining 1230 re-
sponses, 478 (38.9%) were labeled as Yes-decisions (”Yes”
+ ”Strongly Yes”) and 752 (61.1%) as No-decisions (”No”
+ ”Strongly No”). These Yes/No-Decisions served as labels,
with either (i) PSD features (76 features), (ii) ApEn features
(76 features) or (iii) PSD+ApEn features (152 features) of
the corresponding trials fed as subject-independent inputs to
the supervised learning algorithms. All feature inputs have
been mean-centred and scaled to the unit variance.

C. Cross-Validation and Hyperparameter Tuning

Hyperparameters were optimized for weighted F1-score
within a cross-validation grid search framework. For kNN,
candidate k ∈ {1, 2, 3, ..., 10}, for Linear-SVM and RBF-
SVM, candidate C ∈ {0.1, 1, 5, 10, 20, 50, 100} and for XG-
Boost, candidate λ ∈ {1, 2, 3, ..., 10}. Classifier performance
was assessed via a 20-fold cross-validation procedure, which
trains on a 95% dataset subsample and tests on the remaining
5% subsample in each iteration. Performance was evaluated
using (i) classification accuracy and (ii) weighted F1-score,
which is the weighted average of the F1-score for each label
to account for label imbalance.

IV. RESULTS

A. Behavioral Analysis

The positive rank correlation between reward-repetition
decision (all 5-point responses) and pleasantness ratings is
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Fig. 1. Topographic scalp maps illustrating the mean differences in (A) PSD in dB and (B) ApEn between Yes-decision and No-decision trials, for each
of the 4 frequency bands. All plot scales are zero-centred at green. Statistically significant differences (after FDR corrections) are marked with bold circles.
For PSD, these differences are found in Alpha: C3, C4, T3, T4, P3, P7, P8, O1; Beta: Fp2, F3, F8, Cz, T4; Gamma: F3, T4. For ApEn, these differences
are found in Theta: Fz, F3, F4, P3, P7, P8, O2; Alpha: Fp2, C3, P8, O1; Beta: T4, O1, O2. *Note that in the beta and gamma PSD difference plots, the
right temporal activity localized to T4 is most likely attributable to effects of reward-repetition processing, evidenced by high PSD in Yes-decision trials
(beta: M = 0.214 ; gamma: M = 1.55E-03) and relatively low PSD in No-decision trials (beta: M = 0.124 ; gamma: M = 8.68E-04).

strong (Spearman’s ρ = 0.63, p < .001), and the coefficient
of determination is R2 = 0.407, meaning that pleasantness
explains 40.7% of the variance of reward-repetition decision.

B. EEG PSD and ApEn Analysis

Figure 1 displays the topographic scalp map of the mean
differences in PSD and ApEn between Yes- and No-decision
trials. These differences were tested using t-tests, with the
Benjamini–Yekutieli false discovery rate (FDR) procedure
[17] applied to correct for multiple comparisons for α = .05.
Statistically significant differences in PSD were observed
mainly in the alpha band amongst centro-posterior channels
(raw ps< 1.4E-5), as well as in the beta (ps< .0003) and
gamma bands (ps< .0003). Statistically significant differ-
ences in ApEn were observed mainly in the theta band in
frontal and posterior channels (ps< .006), as well as in the
alpha (ps< .007) and beta bands (ps< .0001).

C. Classifier Performance

According to the mean classification accuracy and
weighted F1-score (Figure 2), merging PSD and ApEn
features produced better classification performance across all
classifiers, compared to using either only PSD or only ApEn
features. However, the advantage of feature merging appears
to be marginal, especially in the case of kNN and XGBoost.

kNN achieved the best classification accuracy at 77.6%
(weighted F1-score = 0.763) when using all PSD and ApEn
features, with k = 10. Other nonlinear classifiers (RBF-SVM
with C = 10; XGBoost with λ = 1) also had comparable
performance, with accuracy scores > 75% and weighted F1-
scores > 74%. Linear-SVM had the least accurate classifi-
cation with 66.6% accuracy at best (C = 100).

V. DISCUSSION

The current study set out to assess the feasibility of using
wearable EEG features to predict consumer reward-based

evaluations. First, it was found that subjective pleasantness
was a significant correlate of reward-repetition decisions,
though it only accounts for less than half (40.7%) of its
variance. This finding is in agreement with the idea that there
are other factors apart from products’ hedonic value that
contribute to reward-based evaluations [8]. Therefore, EEG is
needed to detect neurocognitive signals that can better predict
consumers’ reward decision-making.

Second, statistical analyses reveal that PSD and ApEn
are modulated with respect to reward-repetition decisions.
PSD, which captures activation information in the frequency
domain, showed Yes-No differences most prominently in
the alpha, beta and gamma band. ApEn, which captures
nonlinear dynamic information in the time domain, showed
Yes-No differences most prominently in the theta, alpha and
beta bands. Alpha-, theta-, and gamma-band modulations
observed here are consistent with prior olfactory studies,
e.g. [2], which have shown that activity within these bands
relate to pleasantness evaluations. The additional presence
of substantial beta-band modulation is noteworthy, as beta
brain oscillations are associated with reward-based process-
ing [18]. Overall, these patterns suggest that in making a
decision concerning repetition of the stimuli, neural mecha-
nisms underpinning hedonic judgements as well as reward-
driven processing (amongst others) are engaged.

Most critically, both PSD and ApEn features can support
reliable classification of reward-repetition, especially when
using nonlinear classifiers (e.g. kNN, XGBoost). Merging the
two brings marginal benefit in most cases. This indicates that
both frequency-domain and time-domain features extracted
at the sensor level from single trials have informative value
relating to reward-based evaluation and decision-making.
These results are notable in view of the challenges typically
associated with single-trial EEG discrimination [19].
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Fig. 2. (A) Mean classification accuracy (chance accuracy = 61%) and (B) Mean weighted F1-score of the 4 supervised learning models, using (i) PSD
features, (ii) ApEn features, and (iii) the combination of PSD and ApEn features. Error bars represent ±1 standard error of the mean (SEM).

VI. CONCLUSIONS

This proof-of-concept study demonstrates the viability of
using features estimated from wearable EEG signals to pre-
dict consumer reward-based evaluations of olfactory stimuli,
with the best trial-based classification performance (77.6%
accuracy) achieved with kNN using PSD and ApEn features.
Our findings also illustrate the significant role played by
brain oscillations spanning the theta, alpha, beta and gamma
bands in reward-related decision-making, suggesting recruit-
ment of a wide array of neurocognitive mechanisms.

It must be noted that the current study focused on partic-
ipants of Chinese ethnicity to avoid extraneous inter-subject
affective and neural differences. Future research will study
how demographic and cognitive factors influence consumers’
reward-based decision-making and to what degree machine
learning models can be trained to account for these factors.

Considering the significant challenges raised by single-
trial classification of high-order cognitive states especially
with wearable EEG devices, we believe the present study
constitutes a significant breakthrough in consumer neuro-
science research, by demonstrating for the first time the
feasibility of using sensor-level features towards practical
objective prediction of consumer reward experience. Future
work can focus on finer-tuned, multi-class classification
of reward-repetition responses, further paving the way for
naturalistic, non-verbal testing in consumer research.
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