
 

 

Abstract— Inadvertent lower extremity displacement (ILED) 
puts the feet of power wheelchair (PWC) users at great risk of 
traumatic injury. Because disabled individuals may not be aware 
of a mis-positioned foot, a real-time system for notification can 
reduce the risk of injury. To test this concept, we developed a 
prototype system called FootSafe, capable of real-time detection 
and classification of foot position. The FootSafe system used an 
array of force-sensing resistors to monitor foot pressures on the 
PWC footplate. Data were transmitted via Bluetooth to an iOS 
app which ran a classifier algorithm to notify the user of ILED. 
In a pilot trial, FootSafe was tested with seven participants 
seated in a PWC. Data collected from this trial were used to test 
the accuracy of classification algorithms. A custom figure of 
merit (FOM) was created to balance the risk of missed positive 
and false positive. While a machine-learning algorithm (K 
nearest neighbors, FOM=0.78) outperformed simpler methods, 
the simplest algorithm, mean footplate pressure, performed 
similarly (FOM=0.62). In a real-time classification task, these 
results suggest that foot position can be estimated using 
relatively few force sensors and simple algorithms running on 
mobile hardware.   
 

Clinical Relevance— Foot collisions or dragging are severe or 
life-threatening injuries for people with spinal cord injuries. The 
FootSafe sensor, iOS app, and classifier algorithm can warn the 
user of a mis-positioned foot to reduce the incidence of injury. 

I. INTRODUCTION 

Power wheelchairs (PWC) are critically important for 
independent mobility and quality of life for persons with spinal 
cord injuries and disorders (SCI/D), but even optimally 
configured PWC’s can be dangerous during operation by users 
who cannot feel, see or easily reposition their lower limbs 
when driving conditions, e.g. rough terrain, cause inadvertent 
lower extremity displacement (ILED) from the PWC 
footplates. Additionally, pressure relieving features of PWC 
such as tilt-in-space with leg elevation may displace the feet 
because the footrests must extend away from the feet during 
leg elevation. After ILED from the footplates, traumatic 
fractures, wounds/cuts/ infections, abrasions, pressure injuries, 
and/or amputations may occur [1]. Types of ILEDs reported 
have included the foot slipping off the footplate without the 
user being aware, catching the feet between the footplate and 
an object, bumping the feet into objects, the feet hanging over 
the footplates, the foot dragging under the PWC, or developing 
pressure “hot spots” causing skin breakdown [2]. Medical 
costs of lower limb injuries associated with foot 
mispositioning on the PWC footplate are known to be high [3], 
despite the relative ease of repositioning the foot if the user is 
warned of ILED.  

Active safety systems are now common in automobiles to 
improve automobile control and prevent crashes [4], and in 

mobile robots, such as pharmacy delivery systems in hospitals 
[5]. “Smart” wheelchairs with sensors to actively detect the 
surrounding environment are a new commercial reality [6], 
however there are no current systems to help users replace the 
missing sensory feedback of the nervous system which is lost 
after SCI/D. Safe wheelchair use relies upon users consistently 
implementing safe operation techniques, which requires intact 
vision, cognition and impulse control [7]. Development of 
smart footplate position sensing and feedback provides the 
basis for developing active safety interventions to address the 
unmet clinical need for real-time prevention of lower limb 
injuries during PWC use [8], first by helping define incidence 
of lower limb injuries and near misses and, once optimized, by 
helping to prevent ILED-related injuries. 

The FootSafe system (Fig. 1) combines force and 
proximity sensors with a wirelessly-connected smartphone 
application with adjustable alarm options to provide 
continuous real-time monitoring of foot position on the 
footplate. The device shown was designed to fit the a 
commonly used PWC footplate. Each half of the FootSafe 
system includes an array of 24 low profile piezoresistive force 
sensing regions (FSR) and 14 infrared (IR) proximity sensors 
to detect foot position above the footplate. In this work, we 
describe the first efforts to use the Footsafe system with PWC 
users, and the performance of several detection algorithms at 
detecting ILED in real time.   

 
Fig. 1. The FootSafe sensor transmits foot pressure and position data from 
the footplates of a wheelchair. Data from 24 locations per footplate are 
analyzed by an iOS application in real time to warn the user of inadvertent 
lower extremity displacement.  

II. FOOTSAFE REAL-TIME SENSOR IMPLEMENTATION  

The FootSafe sensor was designed to accommodate a wide 
range of footwear, be cost-effective, and unaffected by 
environmental conditions or weather. FootSafe used sensors to 
detect foot pressure profiles across the footplates of a standard 
PWC. The system incorporated force-sensing resistors (FSRs) 
and infrared (IR) distance sensors to determine the foot’s 
position based on pressure and proximity to the footplate. 
Details on sensor architecture were previously described [8] 
and are only briefly summarized here. Further, while the 
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FootSafe includes pressure- and distance-based sensors, here, 
we will only focus on the pressure sensor aspects because these 
were used to train detection algorithms described later. 
Distance-based algorithms are a future topic.  

A.  Footplate sensor electronics 

FSRs were implemented using interdigitated electrodes on 
a printed circuit board (PCB), with a conductive polymer 
(XactFSR film, Sensitronics, Bow, WA) affixed above each 
electrode site [8]. Each of the 24 FSRs per footplate measured 
2.8 x 2.8 cm. FSRs were read out with a row-column 
multiplexed scheme allowing each FSR to be individually 
measured as a resistive half-bridge. A Teensy 3.6 (ARM 
Cortex M4, 180 MHz, PJRC, LLC) microcontroller controlled 
the multiplexers and used an onboard analog-to-digital 
converter (ADC) to measure FSR values at 10 Hz. Sensor 
values were truncated to 10-bit accuracy to produce a relative 
mass sensitivity of about 1 g per FSR.  

FSR data recording and pre-processing was performed on 
the microcontroller to produce a new sensor frame every 100 
ms. Sensor frames from both feet were measured, processed, 
and transmitted using a serial Bluetooth (HM-10) interface.  

 
Fig. 1. FootSafe prototype encapsulated in tinted (1) and un-tinted (2) 
urethane to show FSRs (3) and IR sensors (4). An interconnect cable (5) 
joined the left and right sensors to an enclosure (6-8) housing the Teensy 3.6, 
HM-10 Bluetooth module, and USB battery.  

B.  Real-time data readout and logging app 

Sensor data transmitted from the FootSafe was processed 
by a mobile device (Apple iPod Touch) with a custom iOS 
application (Fig. 2). The application applied calibration data 
to raw sensor values, recorded data for analysis, and alerted 
the user of ILED based on a simple algorithm previously 
described [8]; later we describe more accurate real-time 
algorithms tested with data from human participants.  

 
Fig. 2. An iOS app (a) received sensor data over Bluetooth and alerted the 
PWC user if a foot was poorly placed (b).  

C. Footplate sensor array construction 

FootSafe electronics were assembled on fiberglass printed 
circuit board with an electroless nickel, immersion gold 
plating. After functional testing, circuit boards were 
overcoated to prevent damage during foot contact and PWC 
operation. A two-piece protective overcoating of Simpact™ 
85A polyurethane (Smooth-On, East Texas, PA) was cast in 
aluminum molds. Small 3x3 cm squares of 2 mm thick 
XactFSR film (Sensitronics, Bow, WA) were attached to the 
top layer of the PCB using double-sided tape (McMaster-Carr, 
Elmherst, IL) such that they rested directly above each FSR 
(Fig. 3). A 2-mm tall bump in the top of the polyurethane 
overcoating was positioned above each FSR on the FootSafe 
to act as a stress concentrator, while a small cutout window 
rested above each IR sensor. The IR sensor window could be 
filled with IR-transparent epoxy, but this was not done for the 
tested prototypes. The bumps ensured that pressure from a 
patient’s foot would be distributed onto an FSR, and not 
another part of the FootSafe PCB. A silicone adhesive (Dow 
Corning 3145) glued the two polyurethane parts together, 
fitting over the PCB and completely encapsulating it. 

 
Fig. 3: Force sensors were integrated on a PCB (A) with gold-plated 
electrodes (B) contacting conductive film (C). Data from infrared distance 
sensors (D) were not analyzed in this work. The entire assembly was 
encapsulated with flexible urethane (E,F) for environmental resistance. 

D. Pressure sensor array calibration 

When biased at a fixed voltage of 3.3 V, the nonlinear 
sensor voltage-pressure profile of the FSRs was modeled as  

V ൌ 3.3 ቀ1 െ 𝑒
షಷ
಼ ቁ, 

where F was the equivalent force applied, and K was a unit 
conversion factor. To simplify calibration, we adopted a linear 
fit to force in a quasi-linear range (Fig. 4).  

 
Fig. 4. FSRs demonstrated a force response; to simplify calibration a linear 
fit to a limited range of the response curve was used.  

 To calibrate each sensor, linear regression was used to fit an 
offset and slope, using predetermined calibration masses of 0, 
500, and 1,000 g. These masses were chosen based on the leg 
mass [9] of a 6-foot man with a BMI of 30, and the geometry 
of the footplate surface. 48 slope and intercept pairs were 
calculated, one for each force site. This information was saved 
in a custom data structure. During real-time use, offset and 
slope calibration for each reading was extracted from the data 
structure to produce a floating-point number in units of grams.  

III. ALGORITHMIC DETECTION OF ILEDS 

Classification algorithms detect when the foot is in an 
unsafe position and alert the user. To understand the natural 
variance in foot positions during common activities, data were 
collected from humans seated in a PWC. The foot was placed 
in normal and unsafe positions to create a dataset. Six 
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algorithms were tested on this dataset to determine how 
accurately unsafe foot position could be detected in real time.  

A. Human data collection study overview 

Research was performed with approval of the Cleveland VA 
Medical Center Institutional Review Board. Seven 
individuals, one of whom was an experienced PWC user with 
SCI/D participated (3 women, 4 men). Participants were of 
varying heights (157-183 cm) and shoe sizes, and had varying 
fits in the PWC (oversized to undersized). All recordings were 
performed using a Permobil F5 PWC and the FootSafe device 
affixed to the footplate tray using 3M VHB tape (Fig. 5). One 
recording of simulated daily PWC use was made for each 
study participant, and three 10-minute recordings at rest were 
made for the experienced PWC user.  The experienced PWC 
user with SCI/D had several sets of simulated daily PWC use 
collected to account for potential bias. Each participant 
performed a set of movements known to provoke ILED: 

1. The ball of each foot was pivoted upwards from the heel  
2. Each foot everted outwards from the footplate  
3. Each foot was removed and then returned to the footplate 
4. The PWC was tilted backwards to approximately 45° 
5. The backrest of the PWC was fully reclined backwards 
6. The legrest of the PWC was fully extended 
7. The backrest of the PWC was brought fully upwards 
8. The PWC was tilted forwards to 0° 
9. The PWC legrest was returned to neutral sitting position 

 
Fig. 5. Example seating positions in PWC used in human data collection. 

B. Example pressure data at specific foot locations 

The FootSafe system performed real-time classification of 
foot position based on frames of sensor data captured at 10 Hz 
(Fig. 6). Although only 24 FSRs per foot were used to 
determine footplate pressures, because the foot is large and 
continuous, this resolution was sufficient to show gross 
differences in pressure distribution based on foot position. All 
frames were independently classified in this analysis, although 
sliding window or majority vote approaches could be used in 
the future to reduce single-frame classification errors.  

 
Fig. 6. Example FSR values with (a) both feet in safe positions, (b) ILED on 
both feet, (c) ILED on left foot, and (d) ILED on right foot. The color scale 
range was adjusted for each example for side-by-side comparison. 

C. Algorithm development and optimization 

To test each foot position classification algorithm, we 
defined a figure of merit (FOM) to emphasize the importance 
for true positive detection (Table 1). The training data set was 
manually divided into normal and misplaced foot positions.  

TABLE I. TERMS USED IN ALGORITHM FIGURE OF MERIT 

Term Name Description 
𝛼 True Negative Correctly detected as misplaced 
𝛽 True Positive Correctly detected as correctly placed 
K False Positive Incorrectly detected as correctly placed
𝛾 False Negative Incorrectly detected as incorrectly placed 
L Frame Length Number of frames in recording

M Normalization 
Constant 

Maximum value the fitness function 
produces for a completely accurate detection  

The FOM, σ, with range [-1 1] was calculated as: 

σ ൌ

α െ 𝐾
𝐿 െ ቀ

γ
𝐿ቁ

ଶ
൅ ൬

β
𝐿൰

ଷ

M
 

and the normalization constant M was calculated as: 

M ൌ
α೘ೌೣ

௅
൅ ቀ

β೘ೌೣ

௅
ቁ

ଷ
. 

Six algorithms were evaluated with the human dataset. Five 
algorithms were developed heuristically based on a priori 
knowledge of safe foot position. These algorithms were also 
developed to be easy to compute in a real-time scenario on 
low-power hardware. All heuristic algorithms were binary, 
thresholded classifiers; thresholds were chosen for each 
algorithm to maximize the FOM. A cubic k-nearest neighbors 
(KNN) algorithm was also studied to evaluate the potential 
accuracy improvement in using a machine learning approach.  

The first algorithm (Mean) calculated the mean force on 
the footplate, using all sensor channels. This calculated the 
average equivalent mass that the lower limbs were applying to 
each footplate surface. This value was compared to a set 
threshold, and the frame was marked as misplaced if both the 
calculated average mass was below the threshold. The 
threshold value was chosen as approximately 20% of the 
calibration mass, and optimized to increase the FOM. 

The second algorithm (Centroid) calculated the location 
of the centroid of equivalent mass applied to the footplate 
surface. A region of interest was defined as a maximum 
allowable distance for the centroid from the center of the 
footplate. The average mass on the center two rows of FSRs 
were also compared to a threshold. The frame was marked as 
misplaced if the centroid was outside of the region of interest 
and the average mass was below threshold (Fig. 7a). 

For the third, fourth, and fifth algorithms, the FSR matrix 
was divided into three regions (Fig. 7b). The third algorithm 
(Relative) calculated the average mass per region. The 
difference of the average of Region 1 and Region 3 was 
compared to a threshold, while the average of Region 2 was 
compared to a separate threshold. If the Region 3 – Region 1 
difference was above threshold, and the average equivalent 
mass in Region 2 was below threshold, the frame was marked 
as misplaced. This algorithm was intended to detect improper 
heel or metatarsal joint placement. For all tests, the difference 
threshold was set to 50 g which provided rejection of noise 
while being sensitive enough to detect foot pressure. 

 
Fig. 7. A centroid algorithm (A) was evaluated in addition to algorithms 
which compared differences between FSR regions on the footplate (B). 
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The fourth algorithm (Ratio) was similar to Relative but 
instead a ratio between Region 1 and Region 3 was calculated. 
A frame was marked as valid when the ratio of masses fell 
within a specified range. This algorithm was designed to detect 
an uneven distribution of pressure. 

The fifth algorithm (Mean Square Error, MSE) calculated 
the mean squared error of the equivalent applied mass of 
Region 1 and Region 3 as compared to the threshold value of 
Region 2. The calculated value was compared to a threshold 
value, as well as the equivalent mass of Region 2. 

The KNN algorithm was trained using the MATLAB 
Classification Learner (R2020a) with each calibrated force 
sensor treated as a feature. A misclassification matrix was used 
to train the model (Table 2). Model performance was validated 
using three-fold cross-validation on all available frames from 
all experiment trials (n=41,056). Cross validation prevents 
overfitting by partitioning the provided dataset and estimating 
accuracy on each fold. Every recorded sensor frame was 
manually marked with the state definition (None, Left, Right, 
or Both). Each fold contained 1/3 of the data from the study, 
randomly selected but constrained to contain an equal number 
of observations per subject. The KNN essentially considered 
the correlation of a given footplate state to known states within 
its training set. Fig. 8 shows an example parameterized 
correlation of two adjacent force sensors. Across these two 
sensors, an equivalent applied mass of 750 g on Sensor 1 and 
600 g on Sensor 2 would be estimated as a right ILED. 
Approximately 2,300 of these parametric maps were 
generated, each with their own classification weights. 

TABLE II. MISCLASSIFICATION MATRIX FOR KNN TRAINING 

Predicted Class 

T
ru

e 
C

la
ss

  None Left Right Both
None 0 2.5 2.5 2.5
Left 2.5 0 5 1

Right 2.5 5 0 1
Both 2.5 1 1 0

 
Fig. 8. Example KNN parameterized correlation of two adjacent sensors. 

D. Algorithm performance 

The mean FOMs, accuracies, and positive detection rates 
(PDR) for each algorithm were calculated (Table 3). The PDR 
described the percentage of ILED properly detected by each 
algorithm, as opposed to the percentage of all frames properly 
detected that the accuracy represents. The standard errors for 
each statistic were also calculated.  

The KNN model consistently outperformed the other 
algorithms, however, the KNN model would be significantly 
more complex to implement in a real-time classification task 
due to the large number of features and calculations required. 
Of the simpler algorithms, the Mean and MSE approaches 
showed reasonable performance.  

TABLE III. AVERAGE ALGORITHM PERFORMANCE MEASURES 

Mean Centroid Relative
FOM 0.62±0.10 0.25±0.16 0.20±0.13
Accuracy 84.2±4.1% 68.8±7.4%  67.2±6.3% 
PDR 77.5±6.8% 29.5±10.5%  48.8±7.8% 

Ratio MSE KNN
FOM 0.29±0.12 0.37±0.10 0.78±0.08
Accuracy 70.7±5.0% 72.9±4.5%  95.3±2.7% 
PDR 51.6±8.1% 63.0±8.2%  90.5±3.9% 

The algorithms which relied on information from Region 
2 of the force matrix tended to score lower. This may be due 
to the geometry of the footplate surface and the user’s 
footwear. These algorithms worked under the assumption that 
the user’s foot makes full contact with all regions of the 
footplate surface, which may not be the case depending on 
footwear. For example, when the arch of the user’s shoe 
spanned Region 2 of the footplate, as prevalent with athletic 
shoes and shoes with heels, the center portion did not make 
contact. When the threshold value for Region 2 was decreased 
for these algorithms, an improvement in determining ILED 
correctly was obtained. 

The Centroid algorithm had the lowest FOM, but also had 
the highest standard error, indicating a higher variance in the 
recorded values. Even considering the standard error, the PDR 
of the Centroid algorithm was the lowest out of all tested 
algorithms. It’s possible this may be attributed to footwear 
geometry, or the Centroid calculations may be inaccurate due 
to the low resolution of the force sensing matrix. 

As compared to the manually programmed algorithms 
which only required a few cycles of computation time, the 
machine learning model required approximately 40-60 ms for 
classification on a modern mobile device (Apple iPod Touch). 
When this level of computational power is available, machine 
learning algorithms like KNN are feasible in a real-time 
application. Feature reduction could potentially reduce the 
computational burden of the ML algorithm.  
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