
 

 

  

Abstract— Technological advancements and miniaturization 
of wearable sensors have enabled long-term pervasive 
physiological monitoring. Wrist-worn photoplethysmography 
(PPG) sensors, although quite popular owing to their form 
factor, suffer from poor signal quality in ambulatory settings 
due to motion artifacts. This affects the reliable estimation of 
vital cardiac parameters, especially during motion/activities of 
daily living. Hence, in this paper, we have developed a learning-
based quality indicator engine (QIE), evaluating on 23 PPG 
records of the TROIKA database. The engine comprises the 
fundamental steps of frequency-domain feature extraction, 
feature selection and classification by an ensemble of decision 
trees, achieving an accuracy of 83% in the testing set. To the best 
of our knowledge, the proposed quality engine is the first to be 
evaluated on wrist-PPG data acquired during various physical 
activities and with respect to improvement in heart rate (HR) 
estimation. The QIE demonstrated an average improvement of 
43% in HR estimation, when used in conjunction with state-of-
the-art WFPV algorithm. 

Clinical Relevance— The proposed quality indicator engine 
helps to increase the efficacy of vital parameter estimation (e.g. 
heart rate) from pervasive, wrist-worn PPG sensors on the 
backdrop of motion artifacts when used in ambulatory settings 
(e.g. activities of daily living). 

I. INTRODUCTION 

Photoplethysmography (PPG) is a low-cost, non-invasive, 
optical technique used to detect blood volume changes in the 
microvascular tissue bed, measured from the skin surface. PPG 
signals are obtained from pulse oximeters, which emit light 
(using a light emitting diode) on the skin and measure (using a 
photodiode) the miniature variations in reflected or transmitted 
light intensity. The periodicity of the reflected/transmitted 
light corresponds to the cardiac rhythm, often used for heart 
rate estimation [1], [2]. While ECG is more established and 
robust for monitoring vital cardiac parameters, it requires the 
presence of ground and reference sensors placed on the chest 
making it inefficient in terms of wearability for daily life 
usage. PPG sensors provide a convenient solution as they can 
be acquired from peripheral positions such as earlobes, 
fingertips or wrist, with the latter considered as a convenient 
position for unobtrusive daily use. It has traditionally been 
used in controlled settings (clinical and home environment) in 
commercially available medical devices for oxygen saturation, 
blood pressure monitoring and cardiac activity assessing 
autonomic function and peripheral vascular disease [3]. With 
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advancements in internet of things (IoT) and wireless sensor 
networks (WSN) technologies, there has been a growing thrust 
to incorporate PPG sensors in daily life, capable of use in 
ambulatory settings. However, the acquisition is vulnerable to 
motion artifacts (MA) in daily living conditions and 
correspondingly distorts the signal fidelity and inhibits the 
robustness of the vital parameters estimated. On this backdrop, 
heart rate (HR) estimation, using wrist-worn PPG acquired 
under the influence of physical activity, has received 
considerable research attention, following the IEEE Signal 
processing competition (SPC), 2015 [1]. 

A host of techniques have been proposed to remove or 
attenuate MA using time-frequency domain signal processing 
- adaptive filtering [4], Kalman filtering [5], Wiener filtering 
& Phase vocoder (WFPV) [6], [7], empirical mode 
decomposition (EMD) [8], spectral subtraction [9] and 
learning algorithms [10]–[12]. The WFPV [6] algorithm 
proved to be computationally efficient, producing an error of 
1.02 BPM when evaluated on the same set of signals. Most 
reported research on wrist PPG, have been reviewed in [13]. 
However, majority of the research effort and its associated 
success has been primarily restricted to estimating average HR 
every 2 seconds from 8 seconds of windowed PPG signal. It 
has not been possible to measure instantaneous HR from wrist-
worn PPG signals acquired in ambulant environment, except 
two recent research efforts, which proposed an Empirical 
Mode Decomposition and Hilbert Transform based framework 
[14] and convolution neural networks [15]. Similarly, the 
research on disease prognosis using wrist-PPG has also been 
limited, with a few recent papers focusing primarily on Atrial 
Fibrillation, the most common cardiac arrhythmia in clinical 
practice [16]. Disease prognosis requires a near-accurate 
estimation of heart rate variability (HRV) which is challenging 
given the inherent effect of MA. Hence, it is quintessential to 
formulate a quality indicator for verifying the fidelity of 
ambulant-PPG signals which can help in removing/neglecting 
corrupted frames (windows). This would aid in separating the 
noise/MA affected segments from clean data and further help 
in estimation of vital parameters. 

PPG signal quality has been researched upon briefly, 
using time-domain metrics and learning based approaches. A 
dynamic time warping and multi-layer perceptron-based 
approach was adopted to classify against normal/arrhythmic 
events [17]. Similarly, a signal quality indicator was 
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developed for both PPG and ECG based on thresholding and 
template matching, identifying good/’bad’ signal windows, 
verified against the estimation of respiratory rate [18]. An 
irregular pulse detection algorithm was proposed in [19], 
using a metric, amplitude interval ratio (AIR) which 
incorporates the influence of pulse amplitude fluctuation by 
respiration and autonomic nervous system, wherein this 
metric remains constant for the former while shows 
variability for the later. However, these approaches have been 
evaluated on finger-PPG where the signal morphology due to 
MA are quite different in comparison to wrist-PPG. In a 
recent study, a collection of databases, including wrist-PPG 
databases such as the SPC dataset [1], was used to perform 
PPG signal quality assessment [20]. The proposed method 
used five hierarchical decision rules with three features to 
classify: 1) pulse-free segments, 2) MA-corrupted segments 
and 3) noise-free PPG segments. During training, all wrist-
PPG was directly labelled as MA-corrupted segments without 
further analysis. In another recent study, an SVM classifier 
was built to perform binary quality assessment in presence of 
Atrial Fibrillation on finger-PPG data. The resulting classifier 
was tested on wrist-PPG data with high accuracy [21]. 
However, as most PPG research, the data were collected from 
patients admitted to an intensive care unit, which is not 
representative of daily living conditions. Finally, in a study 
using wrist-PPG data collected in a 24h period from 
participants performing their daily routines, a Random Forest 
classifier was used to classify 5 classes of quality. However, 
the classification result was not further evaluated with respect 
to a clinical outcome (e.g. heart rate estimation or disease 
detection) [22]. 

One of the pre-requisites for cardiac monitoring is to 
ensure long-term continuous operation of the battery-powered 
resource constrained sensor nodes. Analyzing the data on the 
sensor node yields an energy efficient solution in comparison 
to continuous transmission of raw data to a remote server [23]. 
This necessitates low-complexity processing, ensuring energy 
efficient operation of the sensor nodes for longer duration. In 
this work, we have developed a low-complexity supervised 
learning based, quality indicator engine (QIE), which can 
identify good/bad PPG frames. The QIE was evaluated on the 
22 SPC records and further validated in conjunction with a 
state-of-the-art HR estimation algorithm (WFPV), 
demonstrating an improvement in overall results of the testing 
set. The paper is structured as follows: the proposed 
methodology using our learning-based approach is described 
in section II, the results and analysis have been presented in 
section III and conclusions have been drawn in section IV. 

II. QIE METHODOLOGY 

Recent research developments have made HR estimation 
possible from PPG data collected during intense physical 
motion. Our proposed QIE, is envisaged as a pre-processing 
stage to vital parameter estimation (in this case HR), to have 
robust estimates as illustrated in Fig. 1. The engine is based on 
ECG-assisted supervised learning framework, wherein we 
threshold HR estimation differences between PPG and ECG as 
the basis for ground truth labelling. Once trained, the model is 

prospectively evaluated on test PPG data to identify good/bad 
signal frames (i.e. windows). The identified good frames are 
processed to estimate HR, while the bad frames are dropped, 
saving much needed computation resource. Hence, our 
proposed QIE is a predecessor to vital parameter estimation. 

 

Figure 1. Envisaged use-case for QIE, aiding HR estimation from wrist-
worn, motion artifact induced PPG signals. 

 The QIE was developed in conjunction with a state-of-the-
art WFPV HR estimation algorithm and evaluated on the SPC 
database. The algorithm uses Wiener filtering to attenuate MA 
in PPG using noise signatures from acceleration data followed 
by phase vocoder for refining HR estimates and an adaptive 
post-processing step. The publicly available IEEE SPC dataset 
comprises 23 recordings of 20 subjects, age ranging 18 to 58, 
performing three different activities. All recordings were 
captured with a 2-channel pulse oximeter with green LEDs, a 
tri-axial accelerometer and a chest ECG for the ground-truth 
HR estimation. All channels were sampled at 125 Hz and the 
data were transmitted to a computer using Bluetooth. Subjects 
1 to 12 performed activity T1 which involved walking/running 
protocol on a treadmill with the following speeds: 1–2 km/h 
for 0.5 min, 6–8 km/h for 1 min, 12–15 km/h for 1 min, 6–8 
km/h for 1 min, 12–15 km/h for 1 min, and 1–2 km/h for 0.5 
min. Subjects 14, 15, 18 and 20 performed T2 activity which 
consisted of various arm exercises (e.g., stretch, jump, etc.) 
without any specific protocol. Further, subjects 15 to 19 
performed arm-intensive activities (e.g. boxing). Therefore, 
the entire dataset has 23 records where some subjects 
performed more than one activity.  

 In this study, the two-channel PPG signals and three-axis 
acceleration signals were segmented into a series of 8-second 
sliding time windows (with 6s overlap), following the 
segmentation of the ground-truth HR.  The WFPV algorithm 
[6] was applied to all windows separately. The resulting HR of 
each window was compared with the ground-truth HR 
provided in the SPC dataset. The average absolute error (AAE) 
between ground-truth ECG HR and PPG HR was used to set a 
threshold (3 BPM) to label good/bad quality windows. An 
overview of the labelling process is depicted in Fig. 2. The 
labels were used for a supervised learning approach, which is 
shown in Fig. 3. 

 

 

 

 

 

 

Figure 2. QIE: overview of the labelling process. 
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Figure 3. QIE: overview of the proposed supervised learning approach. 

1) Pre-processing 

After segmentation, all signals were filtered with a 4th 

order Butterworth bandpass filter with cut-off frequencies of 

0.4 Hz and 4Hz, in order to cover the HR range between 0.6 

and 3.3 Hz when resting and engaging in physical activities. 

After z-score normalization, the two-channel PPG signals 

were averaged into a single channel signal. The averaged 

signal and three-axis accelerometer signals were then down-

sampled from 125 Hz to 25 Hz. 

2) Feature extraction 

 In total, six frequency domain features were extracted 
from the pre-processed data to quantify characteristics 
inherent to PPG quality. The features included both time-
invariant and time-variant features. Besides frequency band 
related features, e.g. the power below 1 Hz, we included the 
crest factor of the spectrum following the work of [7]. The 
crest factor reflects the prominence of a spectral peak and is 
calculated by 

 CF = 
xpeak  

xrms
.  (1) 

where xpeak and xrms are the peak value and the root-mean-
squared value from the spectrum, respectively.  

Additional time-invariant frequency features were 
obtained after Wiener-filtering (WF) as depicted in Fig. 3. A 
Wiener filter estimates a clean signal S(f) from an observed 
noisy process X(f), assuming a known stationary signal and 
an additive noise spectrum N(f) [24]. The estimation of the 
clean signal can be obtained as  

 𝑆̅ ( f ) = X ( f ) − N ( f )  = (1 – 
N ( f )

X ( f )
) X ( f ) = W ( f ) X ( f ). (2) 

The filter convolution in the time domain equals a 
multiplication in the frequency domain. Hence, the Wiener 
filter attenuates frequencies which are more affected by the 
noise. The frequency-domain Wiener filter is given as 

 𝑊( 𝑓 )  =  
𝑃𝑋𝑋 ( 𝑓 ) − 𝑃𝑁𝑁 ( 𝑓 )

𝑃𝑋𝑋 ( 𝑓 )
=  

𝑃𝑆𝑆 ( 𝑓 )

𝑃𝑆𝑆 ( 𝑓 )−𝑃𝑁𝑁 ( 𝑓 )
.  (3) 

Following [6], we estimated the noise spectrum PNN ( f ) 
from the three accelerometer signals by averaging their 
spectra and  the clean PPG spectrum Pss(f) from the previous 
filter outputs in a recursive manner. The final filter 
coefficients were included as features, as well as the crest-
factor after filtering. Table I presents a description of all the 
features.  

 

 

 DESCRIPTION OF EXTRACTED FEATURES 

Domain Features Explanation 

Time-invariant 

frequency features 

(before WF) 

powerNoise Spectral power below 1Hz 

CF 
Crest factor; ratio of the spectral peak 
and the root mean square of the 

spectrum 

Time-variant 

frequency features 

coeNoise 
Sum of scalogram coefficients below 

1Hz 

CF-t Mean time-variant crest factor 

Time-invariant 
frequency features 

(after WF) 

meanWF mean of Wiener filter coefficient 

CF-filtered Crest factor after Wiener-filtering 

3) Feature selection 

 The best features were selected using the feature selection 
technique of Minimum Redundancy Maximum Relevance 
(MRMR). The mutual information of variables is used to 
quantify the redundancy and relevance to the response 
variable [25]. The top two features were CF-filtered and 
powerNoise. 

4) Classification 

 The selected features were used in an ensemble learner: 
Random Under-Sampling Boosted (RUSBoosted) Trees. 
RUSBoost is designed to improve the classification 
performance of a weak learner, such as a decision tree, and is 
effective at classifying imbalanced data [26]. The number of 
trees and number of decision nodes within each tree were 
optimized with respect to five-fold cross-validation via a grid 
search in the training data. The resulting classifier included 
500 trees with each having 33 nodes. The learning rate was 
set to 0.1.  The dataset consisted of 3203 8s-windows and was 
randomly split (80%-20%) into training and testing data, 
resulting in a training set of 2562 windows and a test set of 
641 windows. The classification results, selected features and 
a corresponding detailed analysis are presented in the 
following section.  

III. RESULTS AND ANALYSIS 

The performance of the classifier on the testing data is 
reported in Table II.  

 CLASSIFICATION RESULTS 

 Accuracy  Sensitivity Specificity F1 score Precision 

Classifier 0.8253 0.6854 0.8478 0.5214 0.4207 

 

Frequency domain 
feature extraction 

Pre-
processing 

Training 
data 

Testing 
data 

Wiener 
Filter 

Frequency domain 
feature extraction 

Feature 
selection 

Classification 

Feature 
extraction 

 

Trained 
parameters 

Classified 
quality 

7065



 

 

 

A. QIE and Heart Rate estimation 

The quality indicator engine (feature extractor, selection 
and classification) was further applied on the testing data. All 
windows classified as bad quality were removed to improve 
the effective HR estimation result. Table III details the number 
of windows before and after application of the QIE, together 
with the average absolute error (AAE) and the standard 
deviation of the absolute error (SDAE). The QIE was able to 
discard 145 8s-windows out of 641 8s-windows, resulting in 
an improvement of 43% in HR estimation. In a real-time 
setting, the removal of these bad quality windows, prior to HR 
estimation, would have resulted in a more energy efficient 
operation of the wearable system, displaying a real-time HR. 

 EFFECT OF QIE AS A PREDECESSOR TO HR ESTIMATION 

Before QIE After QIE 

Number of 

windows 
AAE ± SDAE 

Number of 

windows 
AAE ± SDAE 

641 2.00 ± 3.54 496 1.14 ± 1.57 

B. Complexity Analysis 

Given the use-case of the proposed work on wrist-worn 
ambulant PPG, it is rather essential to ensure that the QIE can 
perform fast inference such that it does not cause a delay in 
post-processing of vital parameters. The QIE involves 
extracting two features using FFT (complexity O(NlogN), 
where N is the data size, i.e. 256 in our case), the classification 
uses a Decision tree algorithm (complexity O(kNlogN), where 
k is the number of features, i.e. 2 in our case). This makes the 
QIE implementation amenable for real-time inference. 

IV. DISCUSSION 

Quality metrics for ECG have been  extensively explored 
and acknowledged for their ability to reduce false alarms in 
diagnostic tools [27]. Analogously, there have been several 
papers reported on signal quality estimation of PPG signals, 
though majority of which are based on finger PPG signals  
[17], [18], [28]–[32]. Regarding wrist PPG, the focus has been 
primarily on denoising the MA-affected PPG signal, rather 
than devising a signal quality indicator. Table IV gives an 
overview of recent studies using a variety of denoising 
algorithms on the SPC dataset. 

The proposed study was aimed to develop a low-
complexity quality indicator engine (QIE) for MA-affected 
PPG. The current study is unique as it combines QIE and the 
WFPV algorithm [6]. Using solely the WFPV algorithm, a 
AAE of 2.00 BPM was obtained within the test set, which is 
similar to the AAE reported by [6] over all 23 subjects  (1.97 
± 2.48). By applying the QIE prior to the WFPV algorithm, 
the AAE of the test set was reduced to 1.14 BPM while saving 
computation on bad frames/windows. Therefore, the 
proposed method outperforms some of the methods reported 
in Table IV. In future work, the QIE could be combined with 
any of these methods, reducing the AAE even further. 

 

 

 

 

 PERFORMANCE COMPARISON IN AAE 

Published work SPC records AAE SDAE 

Galli et al. (2018) [33] 22 subjects  2.45 2.83 

Mashhadi et al. (2018) [34] 23 subjects  2.15 - 

Biswas et al. (2019) [10] 22 subjects 1.47 3.37 

Motin et al. (2019) [35] 23 subjects  1.85 1.57 

Chung et al. (2020) [12] 23 subjects 0.76 - 

Arunkumar et al. (2020) [36] 23 subjects  1.89 2.64 

Proposed 20% of 23 subjects 1.14 1.57 

V. CONCLUSION 

This paper reports a first of its kind exploration to develop 
an engine that determines the signal quality for wrist-worn 
PPG signals. As proof-of-concept, we have demonstrated the 
efficacy of the engine, using it as a predecessor to improve the 
error rate for HR estimation. Identifying and dropping bad 
signal frames could also help to extract beat-to-beat 
information for HRV, a key component for cardiovascular 
disease detection. The dropped frames would need to be 
substituted by a running average of preceding beats. This 
would also save computation effort on discarded frames with 
poor signal quality. The resource requirement for each stage of 
QIE (feature extraction, classification), the key components of 
the engine have been chosen with an eye towards computation 
complexity, demonstrates the feasibility for real-time 
operations.  
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