
  

  

Abstract— Artifact detection and removal is a crucial step in 

all data preprocessing pipelines for physiological time series 

data, especially when collected outside of controlled 

experimental settings. The fact that such artifact is often readily 

identifiable by eye suggests that unsupervised machine learning 

algorithms may be a promising option that do not require 

manually labeled training datasets. Existing methods are often 

heuristic-based, not generalizable, or developed for controlled 

experimental settings with less artifact. In this study, we test the 

ability of three such unsupervised learning algorithms, isolation 

forests, 1-class support vector machine, and K-nearest neighbor 

distance, to remove heavy cautery-related artifact from 

electrodermal activity (EDA) data collected while six subjects 

underwent surgery. We first defined 12 features for each half-

second window as inputs to the unsupervised learning methods. 

For each subject, we compared the best performing 

unsupervised learning method to four other existing methods for 

EDA artifact removal. For all six subjects, the unsupervised 

learning method was the only one successful at fully removing 

the artifact. This approach can easily be expanded to other 

modalities of physiological data in complex settings. 

Clinical Relevance— Robust artifact detection methods allow 

for the use of diverse physiological data even in complex clinical 

settings to inform diagnostic and therapeutic decisions. 

I. INTRODUCTION 

As it becomes common to collect physiological time series 

data in increasingly complex naturalistic scenarios outside of 

controlled experimental settings, the data are more 

susceptible to unanticipated and uncontrollable sources of 

artifact and interference. Most of this artifact can be clearly 

discerned by eye with minimal training. However, attempting 

to automate what can be seen by eye, such as by thresholding 

signal value or signal derivative, fails to be robust across 

datasets and subjects. Supervised learning, in which machine 

learning models learn to separate signal from artifact using 

labeled training datasets, has been very powerful in a number 

of other settings [1]. However, supervised learning is labor-

intensive and impractical in the case of artifact detection, 

since each small time increment of data must be manually 

labeled for a large number of training datasets.  

Nevertheless, the clear visual detectability of artifact in 

most physiological time series data indicates that artifactual 
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data are fundamentally different in nature from true signal. 

Unsupervised machine learning methods offer an alternative 

that satisfies time and manual labor constraints since labeled 

training sets are not required, and they allow for the learning 

of more complex patterns not explicitly codified [2]. 

In this paper, we demonstrate the efficacy of unsupervised 

learning methods for artifact detection in electrodermal 

activity (EDA) datasets [3] using just 12 well-defined 

features. These data were collected continuously during lower 

abdominal surgery in 6 human subjects and were especially 

susceptible to motion and surgical cautery-related artifacts 

that cause large and clearly visible deflections in the data. 

While these artifactual deflections are clearly visible, to 

complicate matters, there are periods of intact but shifted 

EDA between large deflections. In addition, the beginning 

and end of each deflection is not clearly demarcated. Finally, 

the magnitude, sharpness, and direction of deflections varies 

across subjects and datasets. Figure 1 shows an example 

dataset with specific characteristics of artifacts labeled.  
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Figure 1.  Raw EDA data for Subject 4 showing zoom-ins of different 

artifacts, where there is also true EDA data mixed in. 
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Existing methods for artifact removal from EDA are 

limited and specific to the datasets on which they were 

published [4-8]. These datasets were usually collected in fully 

controlled or semi-controlled experimental settings. None 

have the degree of artifact as in this study. Unsurprisingly, 

these existing methods are insufficient to completely remove 

the artifact when used on these data. In this study, no 

supervised learning methods were included to emphasize 

practicality of use and robustness across research settings.  

In this study, we tested three unsupervised machine 

learning methods for artifact detection: isolation forest [9], K-

nearest neighbor (KNN) distance [10], and 1-class support 

vector machine (SVM) [11]. We defined a set of 12 features 

for each half-second window as inputs to all of the 

unsupervised learning methods. These 12 features were taken 

from features used by existing methods and also adding 

features codifying what is visibly different by eye. We also 

compared the performance to the existing methods. We found 

that the unsupervised machine learning algorithms, using the 

features we defined, were successfully able to remove heavy 

artifact from EDA data across all 6 subjects, while none of the 

existing methods did. In Methods, we discuss the details of 

our datasets, the features we defined, and our implementation 

of the unsupervised learning algorithms. In Results, we show 

the EDA datasets before and after artifact removal using all 

of the methods included in the study (including existing 

methods). Finally, in Discussion and Conclusion, we explain 

the implications of this study and our plans for future work. 

II. METHODS 

A. Data 

In this study, we use EDA data recorded from six subjects 
(2 female), collected under protocol approved by the 
Massachusetts General Hospital (MGH) Human Research 
Committee. All subjects were undergoing laparoscopic 
urologic or gynecologic surgery at MGH. The EDA data were 
recorded from two digits of each subject’s left hand at 256 Hz 
using the Thought Technology Neurofeedback System [12], 
starting from before induction of anesthesia to just after 
extubation. Figure 1 shows an example of the raw data from 
one subject. The main sources of artifact were movement at 
the beginning and end, including positioning, and use of 
surgical cautery. Each instance of turning cautery on or off 
caused a visible deflection in the data. All data were analyzed 
using Matlab 2020b.   

B. Features and Unsupervised Learning Methods 

The 12 features that were defined with guidance from 
literature are listed in Table 1. These features were computed 
for each 0.5 second window (128 samples) for each dataset to 
match the timescale of individual artifacts. These feature 
vectors were then fed as inputs into three unsupervised 
learning methods.  

KNN distance computes the average distance between 
each feature vector and the K nearest feature vectors in the data 
set [10], in this case using Euclidean distance and K of 50. 
Artifactual data is hypothesized to have a greater KNN 
distance than normal data [10]. 1-class SVM is similar to 
regular SVM; however, it is trained on data that is all labeled 
as a single class representing ‘normal’ data and tested on data 

that may also contain anomalies, assumed to be rare [11]. In 
this case, the 1-class SVM was trained on 90% of the data, 
excluding the 10% with the greatest KNN distance. Isolation 
forest is similar to random forest; however, each feature vector 
is scored based on the average length of the path to isolate it 
as a leaf in a forest of decision trees. Artifactual data is 
hypothesized to have shorter path lengths than normal data [9]. 
In this case, each isolation forest consisted of 100 decision 
trees, and the isolation scores were computed as the median of 
10 forests. 

TABLE I.  FEATURES 

 Feature Description 

1 Standard deviation of signal 

2 Difference between max and min of signal 

3 Mean of first derivative 

4 Median of first derivative 

5 Standard deviation of first derivative 

6 Min of first derivative 

7 Max of first derivative 

8 Mean of level 4 Haar wavelet coefficients  

9 Median of level 4 Haar wavelet coefficients 

10 Standard deviation of level 4 Haar wavelet coefficients 

11 Min of level 4 Haar wavelet coefficients 

12 Max of level 4 Haar wavelet coefficients 

 
All three unsupervised learning methods yielded scores for 

each window of data quantifying how anomalous that segment 
of data was (the isolation forest scores – IF scores – were made 
negative to match the directionality of the others). The last step 
of the process was to threshold the scores for each subject to 
determine artifact. The process used to select these thresholds 
relied on the insight that as the threshold is increased on each 
dataset, the portions of data that are labeled artifact decrease 
non-continuously, in discrete jumps. To take advantage of this, 
the skewness and kurtosis (3rd and 4th moments) of the inter-
artifact interval distribution was computed across thresholds, 
since the inter-artifact interval distribution will become more 
skewed as the proportion artifact decreases. The thresholds at 
which local maxima in skewness and kurtosis occurred (large 
change in labeled artifact) were tested. Using a binary search 
method within this set of thresholds streamlined the threshold 
determination process to checking at most ~5 thresholds for 
each unsupervised learning method per subject. The final 
threshold was chosen based on visual inspection to ensure 
removal of artifact.  

After identifying and removing the artifact, the gaps were 
filled using linear interpolation to result in continuous data. 
Any ‘islands’ of data that were shifted upward or downward 
due to artifactual deflection were translated downward or 
upward to match with the linearly interpolated mean of the 
data at that time. Finally, we compared our method to three 
other existing methods: variational mode decomposition [4,5], 
wavelet decomposition [6,7], and simple hardcoding of 
heuristic rules based on thresholding the derivative of the data.  

III. RESULTS 

Table II summarizes the results from all three unsupervised 
methods for all six subjects. For each subject and each method, 
the proportion of artifact from 0 to 1 and the maximum 
contiguous length of artifact are given. The best method, by 
smallest proportion of artifact removed (removing the least 
excess signal) and shortest contiguous length of artifact, is in 
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bold for each subject. Isolation forest was the best method for 
3 of the 6 subjects, KNN distance and 1-class SVM each for 
one subject, and all three methods were identical for one 
subject. Across all of the subjects, the proportions of artifact 
ranged from under 1% to just above 10% and the longest 
contiguous artifact from 6 seconds to 106 seconds.  

TABLE II.  SUMMARY OF RESULTS 

Subj 

Proportion artifact 

Max contiguous length of artifact (sec) 
Isolation Forest KNN Distance 1-class SVM 

1 

0.0876 

17.5039 

0.0729 

17.5039 

0.0321a 

17.5039 

2 
0.1030 

26.0039 

0.1169 

26.5039 

0.1314 

26.5039 

3 
0.0361 

28.5039 

0.0398 

28.5039 

0.0422 

28.5039 

4 
0.0191 

105.5659 
0.0191 

105.5659 

0.0191 

105.5659 

5 
0.1000 

14.5039 

0.0974 

14.5039 

0.1062 

14.5039 

6 
0.0062 

6.0039 

0.0225 

6.0039 

0.0149 

13.5039 

a. Best model for each subject is in bold 

Fig 2 shows the uncorrected and final corrected EDA data 
for all 6 subjects. The degree of artifact varied across subjects, 
but we were able to remove the artifact in all cases. Fig 3 
shows an example of using the kurtosis of the inter-artifact 
interval distribution to select the optimal threshold for 
Subjects 2 and 4. Local maxima of the kurtosis, shown in Fig 
3, were tested, and the highlighted values were selected as the 
final thresholds based on visual inspection of the corrected 
EDA data. Finally, Fig 4 shows a comparison between our 
method and several existing methods for Subjects 2 and 4. Of 
the methods compared, both variational mode decomposition 
and wavelet decomposition were ineffective, thresholding the 
EDA signal at 0 or hardcoding heuristic rules to threshold the 
derivative of the EDA signal were partially effective, and only 
our method was fully effective to remove the artifact.  

IV. DISCUSSION 

In this study, we used unsupervised machine learning 
methods combined with a set of 12 features we defined to 
remove heavy cautery and movement-related artifact from 
EDA data collected during surgery from 6 subjects. We 
compared three unsupervised learning methods (isolation 
forest, KNN distance, and 1-class SVM) with other existing 
methods (variational mode decomposition, wavelet 
decomposition, and hardcoded heuristic rules). For all 6 
subjects, the unsupervised learning methods were the only 
ones successful at fully removing the artifact. We selected the 
best unsupervised learning method for each subject based on 
minimizing the amount of excess EDA signal removed along 
with artifact.  

This method is notable because it did not require manual 
labeling of a training data set and yet was able to remove 
heavy artifact. In addition, our method allowed for 
preservation of as much true EDA signal as possible, even 
when it was interspersed in between sections of artifact. Even 
in cases of visibly intense artifact, the actual proportion of 
data detected as artifact was around 10% or less; any 
thresholding-based method would likely have removed a 
much larger proportion of the data, including true EDA signal. 
Most existing methods also employ decomposition 

 
Figure 2.  Uncorrected and corrected EDA for all 6 subjects. 

 

 
Figure 3.  Use of kurtosis of inter-artifact interval distribution to select 
thresholds for Subjects 2 and 4. IF score refers to isolation forest score. 
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algorithms that can affect the entire signal, including regions 
of signal that clearly have no artifact. Our method, in contrast, 
leaves non-artifact regions of the raw data unchanged. Most 
of this artifact was removed in very short segments, indicated 
by the fact that the longest continuous artifact was under 30 
seconds for 5 out of the 6 subjects and under 20 seconds for 3 
out of the 6 subjects. 

EDA is typically analyzed in terms of two components 
that operate at different timescales and have complementary 
information, the tonic and phasic components [3]. The tonic 
component drifts slowly over the course of tens of seconds to 
minutes [3]; which can easily be interpolated when sections 
of artifact are short. For phasic EDA, short durations of data 
(< 30 seconds) are unlikely to contain more than a few pulses 
[3]. Furthermore, dynamic methods can compute mean and 
standard deviation pulse rate over time even if a few pulses 
are missing in short segments; they can account for this 
missing data in the estimate of uncertainty [13]. 

Finally, our method used only 12 features for each 
window, and many of these features overlapped with those 
used by existing methods. However, our method allowed AI 
to “learn” the differences between artifact and signal for each 
dataset. These 12 features were informed by knowledge of the 
physiology of EDA data. Our method can easily be expanded 
to similar classes of “easily visible” artifact in other 
modalities of physiological data, such as ECG and EEG. 
Custom feature definition can be informed by the knowledge 
of the physiology and types of artifact in those data. 
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Figure 4.  Comparison between different methods for Subjects 2 and 4. 
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