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Abstract— Integrative analysis of multi-omics data is impor-
tant for biomedical applications, as it is required for a com-
prehensive understanding of biological function. Integrating
multi-omics data serves multiple purposes, such as, an inte-
grated data model, dimensionality reduction of omic features,
patient clustering, etc. For oncological data, patient clustering
is synonymous to cancer subtype prediction. However, there is
a gap in combining some of the widely used integrative analyses
to build more powerful tools. To bridge the gap, we propose
a multi-level integration algorithm to identify representative
integrative subspace and use it for cancer subtype prediction.
The three integrative approaches we implement on multi-omics
features are, (1) multivariate multiple (linear) regression of
the features from a cohort of patients/samples, (2) network
construction using different omics features, and (3) fusion of
sample similarity networks across the features. We use a type
of multilayer network, called heterogeneous network, as a data
model to transition between a network-free (NF) regression
model and a network-based (NB) model, which uses correlation
networks. The heterogeneous networks consist of intra- and
inter-layer graphs. Our proposed heterogeneous correlation
network model, HCNM, is central to our algorithm for gene-
ranking, integrative subspace identification, and tumor-specific
subtypes prediction. The genes of our representative integrative
subspace have been enriched with gene-ontology and found to
exhibit significant gene-disease association (GDA) scores. The
subspace in genes which is less than 5% of the total gene-set
of each genomic feature is used with NB fusion integrative
model to predict sample subtypes. As the identified integrative
subspace data of multi-omics is less prone to noise, bias, and
outliers, our experiments show that the subtypes in our results
agree with previous benchmark studies and exhibit better
classification between poor and good survival of patient cohorts.
Clinical relevance: Finding significant cancer-specific genes and
subtypes of cancer is vital for early prognosis, and personalized
treatment; therefore, improves survival probability of a patient.

I. INTRODUCTION
There have been recent efforts in comprehensive studies

of “multidimensional” omics data [1], which in oncology has
been encouraged by the release of The Cancer Genomic Atlas
(TCGA) dataset [2]. TCGA provides genomic, epigenomic,
transcriptomic, and proteomic data of various cancer profiles,
facilitating researchers to study significant cancer-causing
genes and cancer subtypes using both single- and multi-
omic features. These comprehensive studies are conducted
by integrating either the data, its analytics, or both from
these different omic features [1].
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For cancer studies pertaining to outcome prediction, multi-
omics information has been routinely integrated at the data-
level to obtain transformed data models, such as, regression
and network models. For instance, multivariate multiple
linear regression of multi-omics data has been used to
construct gene-gene interaction (GGI) networks [3], and
directed random walks with multi-omic information has been
used on pathway information [4]. Recently, the multi-omics
information has been integrated to form a discriminative
dimensionality reduction tree [5], which is further used for
outcome prediction. The available high-throughput omic data
causes a “small n, large p” or “short-fat data” problem.
The network topology-based algorithms can alleviate this
problem through their gene ranking applications. Identifying
these significant genes and using them as representative
features creates “low-dimensional subspaces” [6]. Alterna-
tively, networks used for single-omic studies can be fused,
thus integrating analytics from different omic features [7].
Similarity network fusion (SNF) [7] and affinity network
fusion (ANF) [8] are examples of methods where patient
similarity networks from each omic data type are fused using
affinity measurement.

Each of the state-of-the-art integrative studies has its
own benefits and shortcomings, and are mostly used in
isolation. We also observe that the integrative studies broadly
fall under the category of data modeling or transformation.
We hypothesize that the semantics of some of these data
models allow them to be extendable, and also work with
other integrative methods. We consider a specific example
of extending the use of an integrative regression model for
finding representative subspaces, followed by an appropriate
network fusion method for predicting cancer subtypes. The
integrative regression model captures the interdependence
between two multi-omics features at the data-level [3],
whereas the network fusion integrates the analytics per-
formed separately from different omic features. Thus, we
demonstrate that such integrative methods can be plugged
into the same workflow or implementation to improve the
overall understanding of the high-dimensional multi-omics
data. In order to achieve a multi-level integration of the multi-
omics data through existing integrative methods, namely
regression and network fusion, we propose a data model
that will transition one method to another, referred to as
the Heterogeneous Correlation Network Model (HCNM).
We propose a three-level integration algorithm driven by
HCNM for gene-ranking, integrative subspace identification,
and cancer subtype prediction (Figure 1). Finding integra-
tive subspaces is equivalent to feature selection as well
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as dimensionality reduction, and is a pertinent research
problem in the face of increased dimensionality in integrative
studies [1]. For finding subspace, some of the dimensions
from the full space are ranked using appropriate methods
and selected. The representative subspace is the subspace
that best represents the full space for subtype classification
in our work.

Heterogeneous networks are a special class of multilayer
networks, where the nodes in each layer are different [1].
Heterogeneous networks have intra-layer and inter-layer
graphs, where the latter is a bipartite graph between nodes in
different layers [9]. These networks have been used for multi-
omics data for up to four different omic features [10] and are
predisposed to embed the multi-omics data by design, and
thus provide novel tools for integrative studies [1]. We use
a heterogeneous network model here to transition between
a network-free (NF) regression model and a network-based
(NB) network fusion method, through the use of correlation
networks. There exist several NF and NB integrative methods
for multi-omics data [1]. Hence, our proposed data model
is specifically a heterogeneous correlation network model.
HCNM is similar to the heterogeneous network model, iH-
NMMO [10] in terms of the use of regression and correlation.
The difference is that iHNMMO has normalized correlation
network layers with regression coefficients as inter-layer
graph edge weights, whereas HCNM has a partial correla-
tion layer computed from the regression model, and cross-
correlation coefficients as inter-layer graph edge weights.

Here, we propose a multi-step algorithm for the construc-
tion and use of HCNM to predict subtypes for a cancer
phenotype. The steps are: (1) integration using multivariate
multiple linear regression I1, (2) construction of correlation
network layers for intra-layer graphs, (3) community detec-
tion by consensus, (4) ranking genes to be integrated in an
inter-layer graph I2, (5) computing inter-layer graph edge
weights, thus completing our HCNM, (6) finding integrative
subspace by ranking edges in the inter-layer graph, (7) inte-
gration of sample similarity networks across different omic
features by network fusion I3, and (8) clustering of the fused
similarity network to find subtypes. Steps (7)-(8), including
I3 can use several network fusion methods [6], [7], [8]. The
novelty of HCNM lies in embedding the interdependence
of different omic features in intra-layer edges, rather than
inter-layer edges. Our contributions are in:

• Transforming a network-free multivariate multiple lin-
ear regression model to our proposed heterogeneous
correlation network model, HCNM,

• Using consensus clustering in the intra-layer graphs of
HCNM for ranking genes,

• Proposing an algorithm with multi-level integration of
multi-omics data for gene-subspace identification, for
an application of cancer subtype identification.

The scope of our current study is limited to undirected
networks, which can be further improved using pathway
information [4] or Bayesian networks [1].

II. MATERIALS AND METHODS

We consider two different omic features in our work, thus
generating two layers in our proposed heterogeneous network
model HCNM). The GGI networks in HCNM are of gene
expressions (Layer-1) and methylation features (Layer-2).
These layers, by design, are correlation networks, as given
in the model name. By multi-level integration of multi-omics
data, we imply three occurrences of multi-omics integration
in our algorithm: I1 when using a multivariate multiple
(linear) regression (MMR) model, I2 for selecting genes to
compute the inter-layer graph using cross-correlations, and I3
for network fusion of similarity networks of samples/patients.

Our multi-step algorithm can be broadly divided into
two stages. Stage S1 is for finding representative integrative
subspace of significant genes using our proposed model,
HCNM, and Stage S2 is for predicting cancer subtypes using
the subspace.

A. Data

Our case study is on breast invasive carcinoma of
TCGA from TCGA-BRCA project, using gene expression
and DNA methylation data. The downloaded1 dataset is
of 1098 samples. We use an R, Bioconductor package
TCGAbiolinks [11] to download gene expression and
methylation data from Illumina HiSeq and Illumina
Human Methylation 450 platforms, respectively, and
data with PAM50 labels of breast cancer subtypes. PAM50
labels are amongst the most widely used breast cancer
subtypes annotation [12], where the subtypes are luminal A,
luminal B, HER2 positive, triple-negative or basal-like type,
and normal categories.

Pre-processing:
The three-step pre-processing features in the multi-omics
data includes outlier removal, imputing missing values, and
standardization. We perform outlier removal for each omic
dataset by removing the features that satisfy one of these
three conditions: (1) its value across all samples is zero, (2)
its missing values account for more than 25% of the overall
sample size, (3) its variance is in the lower 25% of the overall
variance of all features [7], [13]. For the retained omic fea-
tures, we impute the missing values using the median value
of all samples. For each omic feature, we then standardize
the values using z-scores, such that (µ, σ) = (0, 1). Finally,
methylation probes are mapped to genes; and if a probe is
mapped to multiple genes, a least correlated feature with the
gene expression trait is considered [14]. Suppose the gene
is not available in expression data and multiple probes are
associated with it. In that case, the methylation feature with
the maximum variance is considered and mapped to that
gene.

We additionally select specific samples based on the
clinical information to meaningfully study a cohort. We have
filtered the samples if a patient’s vital status is ‘alive,’ yet the
number of survival days is below the median of survival days

1The dataset has been downloaded in December 2020.
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Fig. 1. Our proposed algorithm of multi-level integration of multi-omics data using HCNM, with I1, I2, and I3 as the different integration steps.

across all samples. We finally take the intersection set of the
samples retained for both expression traits and methylation
features. The final data used further in our case study is
of 486 samples, with 16,626 expression traits and 10,109
methylation features.

B. Stage S1: Finding Integrative Subspace Using HCNM

Here, we construct the intra-layer graphs in HCNM,
detect communities by consensus in these layers, rank genes
based on communities to construct the inter-layer graph, and
finally construct the inter-layer graph in HCNM. Using the
inter-layer graph, we perform a second iteration of ranking
genes, to select highly ranked “significant” genes for finding
representative subspace. We refer to this as an integrative
subspace as it is the union-set of subspaces in all omic
feature spaces. S1 includes two integration steps: I1 using
regression to construct one of the intra-layer graphs, and I2
where genes are selected using consensus communities and
ranking procedure.

Step-1: Multivariate Multiple Regression (I1):
We use the MMR model by treating DNA methylation data
of genes as features and expression traits as outputs, for inte-
grating selected/filtered methylation features and expression
traits [3].

For m gene expression levels and n methylation features,
we have Y ∈ Rk×m and X ∈ Rk×n, respectively, for k
samples. The MMR model is written as

Y = B ·X + E, where B ∈ Rm×n and E ∈ Rm×k,
for the regression coefficient matrix B and residual error ma-
trix E. We now have Y = [y1, y2, . . . , ym], corresponding to
E = [ε1, ε2, . . . , εm], with εi ∼ N(0, σ2), ∀i ∈ [1,m], by the
conventional linear regression model. Here, we implement
MMR using Lasso (Least absolute shrinkage and selection
operator) [15] regression model.

Step-2: Construction of Intra-layer Graphs in HCNM:
To transform a regression model into a network-based model,

correlation networks are a natural choice. Regression models
have been used for computing partial correlation coeffi-
cients [16], which quantifies the correlation between the
dependent variables, when conditioning on the independent
variables. The intra-layer graph for the independent variable
is computed using conventional correlation values.

Layer-1 (Gene expression levels):- When a linear regression
model is used, the nth-order partial correlation, i.e., con-
ditioned to n independent variables, can be computed as
the total linear (Pearson) correlation between the residual
errors [16]. When Y is regressed on X , the residual error
e(Y ) represents the parts of Y that are uncorrelated with X .

e(Y ) = Y −
(
β̂
(Y )
0 +Xβ̂

(Y )
1

)
.

Thus, the partial correlation coefficient z of Y , when condi-
tioning on X , is:
z{Y } = {ρ(εi, εj)} = ρ

{
e(Y )

}
, where ρεi,εj =

cov(εi,εj)
σεiσεj

,
and cov and σ refer to covariance and standard deviation,
respectively. These computed partial correlation coefficients
are now weights of edges between m expression traits, in
Layer-1 of HCNM.

Layer-2 (DNA methylation features):- Since we are comput-
ing the linear correlation amongst the methylation features,
we determine the biweight midcorrelation (bicor) coeffi-
cients [17]. Bicor is widely used for computing correlation
between genomic features, as it is a median-based measure,
making it less prone to outliers. Despite their similarities,
bicor is preferred over Pearson correlation in genomic appli-
cations, where it is also widely used as a similarity measure.
These computed bicor coefficients are now weights of edges
between n methylation features, in Layer-2 of HCNM.

Step-3: Community Detection by Consensus:
Clusters of genes in GGI networks, identified using their
coexpression values, are often enriched with similar func-
tional annotations [18]. Communities identified in these
networks give such gene clusters. Both Layer-1 and Layer-
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2 are completely connected networks, which requires them
to be sparsified for performing community detection using
popularly used methods, such as, walktrap [19], fast greedy
optimization [20], and Louvain community detection [21].

Graph Sparsification:- Wolfe et al. [22] have explained how
the guilt-by-association (GBA) heuristic implies that the
weaker co-expressions or edges in a network are frequently
connected to the dissimilar functional clusters. Thus, these
edges have to be filtered out of the network to enable us
to identify significant connected components in the network.
These connected components are also “locally dense, glob-
ally sparse” communities with strong inter- and weak intra-
community links. Several techniques have been successfully
used for determining the threshold for edge-filtering [23],
which include p-value based methods, and percolation anal-
ysis (PA). PA involves observing the connected components
of the network while progressively increasing the threshold
for edge weights [24]. The threshold at which the giant
connected component begins to fragment is considered opti-
mal to filter out edges that retain the network as a single
connected component. We use this threshold value τ as
an absolute value cutoff, implying filtering out edges with
weights in the interval [−τ, τ ]. Hence, we first filter the
edges based on p-value, and then based on τ from PA.
When using correlation networks, we retain only statistically
significant edges, which represent correlations with p-value<
0.05. Here, τ for Layer-1 and Layer-2 are 0.36 and 0.32,
respectively. We now have 15,756 gene expression levels
with 3,367,038 edges in Layer-1, and 9,826 methylation
features with 7,545,734 edges in Layer-2.

Communities:- “Locally dense, globally sparse” communities
regularly occur in biological networks, where hubs dis-
tributed in the dense subnetworks play specific biological
roles [25]. Depending on the semantics of community for-
mation, intra-community genes have a higher likelihood of
similar roles in a specific disease [26]. In the absence of
ground truth for communities in the intra-layer graphs in our
case study, we find communities by consensus from selected
widely used community detection techniques, namely:

Walktrap Method: identifies denser neighborhoods as
communities, based on the assumption that a random walker
tends to visit denser neighborhoods for extended periods of
time compared to sparser ones. The distance between the
two nodes is the likelihood of reaching from one to another
in n steps. Communities are clusters that are merged using
Ward’s hierarchical clustering [27], while minimizing intra-
cluster distances. We use an optimal value of n = 4, here.

Fast Greedy Optimization Method: uses a hierarchical,
agglomerative model, à la Walktrap method. It is also similar
to Newman’s modularity maximization method [28], but is
more suitable for large networks attributed to its linear run-
ning time. The greedy optimization identifies communities
with high intra- and low inter-cluster edge densities.

Louvain Community Detection: is another greedy op-
timization method that uses modularity maximization to
partition a network. This is widely used in genomic analysis.

Consensus Voting:- We select these methods based on the
similarity of the semantics of their outputs by design. Thus,
we expect to get similar results from these methods, which
can be aggregated for a final outcome by consensus. We
arrive at a consensus by voting if pairwise nodes, i.e., genes,
are likely to be in a community. Thus, the co-association
votes are equivalent to the likelihood of genes i and j
are in the same community across the results from the
selected methods. Modeled as a network, the co-association
votes D(k)

ij are computed between nodes i and j, belonging
to communities Ci and Cj , respectively, using different
community detection methods, for k = 1, . . . , NM , and are
averaged to get the aggregated co-association vote, Dij .

D
(k)
ij =

{
1 , if Ci = Cj ,

0 , otherwise
, and Dij =

1
NM

.
NM∑
k=1

D
(k)
ij .

Thus, the network represented by the (aggregated) co-
association matrix, D, is the sparsified version of the cor-
relation network, for each intra-layer graph. We now use
the genLouvain community detection algorithm [29] on the
transformed network. GenLouvain is a variant of the Lou-
vain community detection algorithm that additionally uses a
resolution parameter γ and a modified modularity score:

Q(~g, γ) =
n∑
j=1

n∑
i=1

(Aij − γPij)δ(gi, gj),

where A is adjacency matrix (i.e., D, here) of size n, and
Pij is an expected matrix under null model = kikj

2m , where
ki =

∑
j Aij and 2m =

∑
i ki.

Using Walktrap, fast greedy optimization, and Louvain
methods, we get 2902, 626, and 430 communities in Layer-
1, respectively. Similarly, we get 757, 458, and 310 commu-
nities in Layer-2, respectively. GenLouvain implemented on
co-association networks, for 25 iterations, gives 130 and 770
communities in Layer-1 and Layer-2, respectively.

Step-4: Ranking Genes for Inter-layer Graphs (I2):
In each intra-layer graph, the genes are ranked based on
the significance in the network, quantified by the measures,
such as, node degree, node betweenness centrality, and
eccentricity. The highest betweenness centrality score implies
that the node is on the shortest path of most other nodes.
The nodes with eccentricity equal to the network radius are
considered to be central in the network. We thus identify
three sets of nodes in each community in each intra-layer
graph, (1) all central nodes, (2) top 10% of genes, ranked
based on their node degree, and (3) top 10% of genes, ranked
based on betweenness centrality. The union-set of these sets
gives us the significant genes in the layer. This process finds
3,895 of 16,626 expression traits, and 1,882 of 10,109 DNA
methylation data of genes to be significant. The union-set
of the selected features from both layers gives the inter-
layer graph, which is now an integration, albeit a weaker
one compared to I1 and I3.

Step-5: Construction of Inter-layer Graph in HCNM:
The inter-layer graph is computed using Spearman’s cor-
relation matrix between the selected genes from Layer-1
and Layer-2. We sparsify this graph using the p-value and
threshold from PA, as done for intra-layer graphs. The sparsi-
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(i) Finding Threshold for the Inter-layer Graph

DNA Methylation Gene Expression

(ii) Inter-layer Graph of Ranked Genes

0.20

Fig. 2. Inter-layer graph of HCNM. (i) A plot of the edge cutoff value against the network components using percolation analysis, giving selected threshold
τ = 0.20, for the graph. (ii) The connected components of the graph, with 3+ nodes and of genes retained after edge (gene-pair) ranking, with edges
between gene expression levels (red circular glyphs) and methylation features (turquoise square glyphs), and the edge width indicates the edge betweenness.

fication could also be done along with the intra-layer graphs
with the genes present in step-3. Using this sparsification,
we get τ = 0.2 (Figure 2(i)). This gives us 974,812 edges
in the inter-layer graphs between 3895 expression genes and
1882 DNA methylation data of genes. This completes the
construction of our proposed HCNM.

Step-6: Representative Integrative Subspace:
To further reduce the number of significant genes in the
representative set, we rank the gene-pairs in the inter-layer
graph based on their edge-betweenness centrality measure.
The top 10% of these pairs found in most of the shortest
paths of the network are finally selected. The connected
components with 3+ nodes of the bipartite inter-layer graph
are shown in Figure 2(ii). This representative subspace of
these selected genes is thus integrative and feature-rich,
making it adequate to study the subtypes instead of the
entire gene space across both layers. In our case study, the
resultant subspace now has 531 gene expression traits and
339 methylation features, from 486 samples.

C. Stage S2: Subtype Prediction Using Integrative Subspace

We first identify the similarity or affinity networks of the
samples for each omic feature in the integrative subspace,
and then fuse them as an integrative step (I3). We then find
clusters of samples, representative of cancer subtypes.

Step-7: Network Fusion (I3):
Most multi-omics integrative algorithms, such as, similar-
ity network fusion (SNF) [7], and affinity network fusion
(ANF) [8] integrate data of both omic features after com-
puting similarity or affinity matrices internally. ANF is an
improvised integrative procedure on SNF; both the meth-
ods first compute the distance between patients. Using the
distance matrix, affinity measure of each genomic feature
is computed separately. Implementing network fusion proce-
dure on the affinity measures, a final multi-omics integrated
network is generated. We use SNF and ANF by tuning
the hyperparameters K (number of neighbours), σ (variance
for affinity measurement), α (measure for local diameter)
and β (measure for pair-wise distance) using the correlation
measure (ref: Equation 7 [3]). We have used K = 15,
σ = 0.3, α = 0.17, β = 0.2, in 20 iterations, for running

both SNF and ANF in our case study. The number of clusters
NC is estimated using eigen gap and rotation cost methods.

We also use iCluster [30] as an integrative method where
similarities between the samples and clusters are computed
simultaneously by minimizing the intra-cluster variance. We
use the ‘tune.iClusterplus’ method to find the optimal number
of clusters and Lasso penalties. iCluster takes longer compu-
tation time than SNF and ANF, as iCluster directly outputs
the clusters, thus combining step-7 and step-8.

We have implemented these methods using R packages,
namely, SNFtool [7], ANF [31], and iClusterPlus [32]. In our
case study, the rotation cost method has estimated NC = 3
and NC = 4 for SNF and ANF, respectively, and the iCluster
tune procedure, NC = 4.

Step-8: Sample Clustering for Subtype Prediction:
We extract clusters of samples in the fused similarity or
affinity networks using spectral clustering, with NC (from
step-7) as an input parameter. We then compare these clusters
or subtypes with the popularly known breast-cancer subtype
annotation data of TCGA, namely PAM50 [12].

III. RESULTS AND DISCUSSION

For 486 samples, our HCNM has reduced the gene space
of 16,626 gene expression traits and 10,109 DNA methy-
lation data of genes to representative subspace, comprising
of 531 genes and 339 methylation features, i.e., less than
5% of the total gene space. Our model also demonstrates
novel characteristics of the selected genes, e.g., the connected
components in the bipartite inter-layer graph exhibit star
structures. These star-graphs of 3+ nodes, with several gene
expression traits around a single methylation feature, imply a
many-to-one association between gene expression traits and
methylation features (Figure 2(ii)).

Feeding the 870 genes of our integrative subspace into
‘Database for Annotation, Visualization and Integrated Dis-
covery (DAVID)’ tool [33], [34], we get the enriched gene
ontology (GO) terms, with NG genes belonging to each
term. The top 10 terms are sorted based on their false
discovery p-value in Table I. We have verified the gene-
disease association (GDA) score of the shared genes found
in the GO terms with NG > 25% of total genes (highlighted
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TABLE I
THE TOP 10 ENRICHED GO TERMS OF OUR INTEGRATIVE SUBSPACE

GO Term NG PValue
UP KEYWORDS Phosphoprotein 382 5.33E-08
UP KEYWORDS Alternative splicing 451 4.91E-05
GOTERM MF DIRECT GO:0005515 394 1.13E-04

∼protein binding
INTERPRO IPR013164:Cadherin, 11 1.93E-04

N-terminal
UP KEYWORDS Transit peptide 38 2.78E-04
GOTERM CC DIRECT GO:0005737 245 6.07E-04

∼cytoplasm
UP SEQ FEATURE splice variant 339 7.29E-04
GOTERM CC DIRECT GO:0005829∼cytosol 164 8.24E-04
UP KEYWORDS Cytoplasm 218 0.001086
UP SEQ FEATURE domain:Cadherin 6 11 0.001183

TABLE II
A FEW TOP GENES ASSOCIATED TO BREAST CANCER, RANKED BY THEIR

GENE-DISEASE ASSOCIATION SCORES (GDA-SC.) FROM DISGENET

Disease: Triple
Disease: Breast Disease: Malignant Negative Breast

Carcinoma Neoplasm of Breast Neoplasms
Disease ID: C0678222 Disease ID: C0006142 Disease ID: C3539878

Gene GDA-Sc. Gene GDA-Sc. Gene GDA-Sc.
STAT3 0.4 STAT3 0.4 STAT3 0.1
MAPT 0.2 ATF2 0.37 SPAG9 0.02
ATF2 0.08 PPHLN1 0.3 DAXX 0.01
TRAF2 0.07 UBR4 0.3 CRTC1 0.01
NUMA1 0.03 RFX2 0.3

TABLE III
GROUND TRUTH ANALYSIS OF BREAST-CANCER SUBTYPES PREDICTION

Scores SNF iCluster ANF
HCNM Full HCNM HCNM Full

NMI 0.43 0.42 0.33 0.39 0.43
Sj 0.46 0.44 0.42 0.51 0.51

in column NG) using the DisGeNET database2. A total of 38
genes have been found in common across seven top enriched
GO terms. 35 out of these 38 genes have positive GDA
scores, implying published evidence of the association of a
majority of genes with the disease. A few of the top-ranked
genes associated with the three different breast cancer types
are listed in Table II. Overall, our HCNM has successfully
identified the significant feature-rich sampled data for each
genomic feature, which is representative of the application
of subtype identification.

Using our representative subspace in multi-omics integra-
tive procedures such as SNF, ANF, and iCluster, we have
identified the subtypes in samples/patients. The subtypes
found using subspace in genes are comparable to the sub-
types found with complete multi-omics feature space. The
reduced dimensionality data is beneficial, as the subspace
is less prone to noise, bias, and outliers. The comparison
of subtypes using Sankey plot (Figure 3) shows that those
identified by SNF used with both full gene space and our
representative subspace (HCNM-based), and by ANF with
the full gene space are almost identical, but we observe slight
differences with subtypes from ANF with our subspace. We

2https://www.disgenet.org/

ANF - HCNMANF - FullSNF - HCNMSNF - Full

Fig. 3. Sankey plot of the patient subtypes from using our algorithm using
network fusion methods (SNF, ANF) with data from the complete (Full)
gene space and our representative subspace (HCNM), shows that subtypes
found using SNF-HCNM data agree with SNF/ANF-Full data, more than
ANF-HCNM.

SNF - HCNM ANF - HCNM

iCluster - HCNM PAM50 - Subtypes

Fig. 4. The good and poor survival times for subtypes were predicted using
different methods. Subtypes are significant at median survival probability
in all methods. We see clear survival probability separation for subtypes
identified using SNF with subspace in genes and benchmark study using
annotated subtypes, i.e., PAM50, than using ANF and iCluster.

have also observed similar behaviour when comparing the
patients subtypes with popularly known subtypes annotation
PAM50,(BRCA Subtype PAM50) [12].

We use Jaccard similarity Sj and Normalized Mutual
Information NMI to compare the clustering results with the
ground truth. Table III shows that (i) ANF with full gene
space is comparable with SNF with our subspace, and (ii)
iCluster on our subspace has the least Sj and NMI values.

We have studied the effect of subtypes on survival
probabilities using Kaplan-Meier survival curves, compar-
ing results of our representative subspace used in different
multi-omics integrative procedures and the reference PAM50
subtypes (Figure 4). SNF with our representative subspace
displays a clear separation between good survival and poor
survival subtypes based on their survival probabilities when
observed at 50% of survival probability (Figure 4). In all
three multi-omics integrative procedures, most subjects of the
basal-like class are classified under subtype-1; the subjects of
the classes, luminal A, and luminal B, are spread across two
subtypes. Overall, we have observed that the network fusion
based methods are more favorable over iCluster, when used
with our representative subspace owing to the computational
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time, and the results in Table III and Figure 4.

IV. CONCLUSIONS

In our case study of gene expression traits and methy-
lation features in the TCGA-BRCA project, our proposed
HCNM has successfully been used for finding the represen-
tative integrative subspace of genes associated with breast
cancer. This multilayer network model uses correlations
within and across the different omic features. The HCNM has
significantly decreased the data dimensionality using ranking
based on gene communities and network topology. We have
used our subspace of biologically significant genes, and
appropriate integrative fusion procedures to predict cancer
subtypes. We have found that subtypes predicted using
integrative network fusion methods, SNF and ANF, are
comparable with the state-of-the-art benchmark studies, more
than with iCluster, a Bayesian method. For evaluating the
overall performance of the method, we need to perform an
ablation study, which is in the future scope of this work.
We intend to integrate Bayesian methods more extensively
into multi-level integration algorithms to improve combining
network-based and Bayesian methods as future work.
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