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Abstract— Physiological fluctuations such as cardiac
pulsations (heart rate) and respiratory rhythm (breathing)
have been studied in the resting state functional magnetic
resonance imaging (rs-fMRI) studies as the potential
sources of confounds in functional connectivity. Independent
component analysis (ICA) provides a data driven approach
to investigate functional connectivity at the network level.
However, the effect of physiological noise correction on
the dynamic of ICA-derived networks has not yet been
studied. The goal of this study was to investigate the effect
of retrospective correction of cardiorespiratory artifacts on
the time-varying aspects of functional network connectivity.
Blood oxygenation-level dependent (BOLD) rs-fMRI data
were collected from healthy subjects using a 3.0T MRI
scanner. Whole-brain dynamic functional network connectivity
(dFNC) was computed using sliding time window correlation,
and k-means clustering of windowed correlation matrices.
Results showed significant effects of physiological denoising
on dFNC between several network pairs in particular the
subcortical, and cognitive/attention networks (false discovery
rate [FDR]-corrected p < 0.01). Meta-state dynamics further
revealed significant changes in the number of unique windows
for each subject, number of times each subject changes from
one meta-state to other, and sum of L1 distances between
successive meta-states. In conclusion, removal of artifacts
is important for achieving reliable fMRI results, however
a more cautious approach should be adapted in regressing
such “noise” in ICA functional connectivity approach. More
experiments are needed to investigate impact of denoising on
dFNC especially across different datasets.

I. INTRODUCTION

Brain functional connectivity, a technique that infers
the connectivity among spatially remote brain regions by
measuring the correlation (or other statistical dependency)
has been gaining increasing popularity [1]. Recently, there
is growing interest in studying functional connectivity
among brain networks. Blind source separation techniques
such as spatial independent component analysis (ICA),
can decompose imaging data such as blood oxygen level-
dependent functional magnetic resonance imaging (BOLD
fMRI) signals, into a set of spatially segregated but
temporally coherent brain networks [2]. Functional network
connectivity (FNC) [3] measures the statistical correlations
among these brain networks, which are often referred to
as intrinsic connectivity networks (ICNs). Dynamic FNC
(dFNC) [4] is a more recent extension of the FNC method,
which takes into account the FNC changes over time as
recent studies have demonstrated that resting state brain
functional connectivity is particularly dynamic [4].
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One of the challenges in conventional functional
connectivity methods especially in resting state fMRI (rs-
fMRI) studies is that the BOLD signal measurements
can be confounded by several cardiorespiratory processes
such as cardiac pulsations, fluctuations in heart rate, and
respiration volume [5]. One widely used approach to
eliminate physiological noise is the retrospective image
space correction of physiological noise (RETROICOR) [6],
which uses a low-order Fourier transform to eliminate
the components that correspond to the respiration, cardiac
pulsation and their related harmonics. It has been shown
that ICA decompositions are also capable of separating
out different sources of artifact including physiological
noise. Given that physiological denoising is becoming more
and more common in preprocessing rs-fMRI data, it is
important to examine how RETROICOR can impact fMRI
data analysis that are conducted with ICA for the purpose
other than artifact removal. Previously, we showed that
ICN temporal properties such as BOLD power spectra and
static FNC may suffer from physiological corrections by
RETROICOR [7]. In this study we aim to examine the
effect of physiological denoising on dFNC in a sample of
healthy subjects. To this aim, brain activity, heartbeat, and
respiration are measured during resting-state scan. We use
group ICA [2] to decompose resting-state data into ICNs
and estimate the time-varying functional connectivity by
computing sliding time-window correlation, and k-means
clustering of windowed correlation matrices [4]. Finally, we
measure the temporal dynamic in both raw and denoised data
using the meta-state approach recently introduced by Miller
et al. [8].

II. MATERIALS AND METHODS
A. Sample and Data Acquisition

BOLD rs-fMRI data were collected from 22 right-handed
healthy subjects (10 males, 12 females, mean age 37.73 ±
11.32 years). Written informed consent was obtained from
all subjects in accordance with a protocol approved by the
university IRB. Scans were acquired on a 3T GE Discovery
scanner with 8-channel head coil (TR/TE = 2000/30 ms,
field-of-view (FOV) = 22 cm×22 cm, acquisition matrix =
64×64, flip angle = 76o, slice thickness = 4 mm, gap = 1
mm, 31 slices, sequential ascending acquisition). Subjects’
heart beats were recorded using a pulse-oximeter placed on
the left index finger. Respiration was measured with a MR-
compatible plethysmograph. During the resting state scan,
subjects were asked to relax with their eyes closed and refrain
from sleeping or thinking of anything in particular.
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B. Data Preprocessing

Following the scan, two copies of the images were
created. One copy was corrected for physiological noise
prior to preprocessing using the RETROICOR algorithm [6]
(denoised data), while the other copy was not (raw data).
Both copies were preprocessed using SPM12 (Wellcome
Department of Cognitive Neurology, UK). Images were
motion and slice-time corrected, spatially normalized to MNI
space, smoothed with 8 mm FWHM Gaussian kernel and
intensity normalization was applied [1].

C. Group ICA and post-processing

Data were decomposed into ICNs using Group ICA of
fMRI Toolbox (GIFTv3.0c; University of New Mexico,
USA). For better functional parcellation, a relatively high
model order ICA (number of IC = 75) was used [1].
In the subject-specific data reduction step, 100 principal
components (PCs) were retained using a standard economy-
size decomposition. Group data reduction step retained
75 PCs using the expectation-maximization algorithm. The
Infomax ICA algorithm was repeated 20 times in ICASSO
software to estimate the reliability of the decomposition.
Subject-specific spatial maps and corresponding time
courses were estimated using the GICA3 back-reconstruction
method. Time courses were post-processed by detrending
and despiking using AFNI 3dDespike, then filtering between
[0.01 and 0.15] Hz with a 5th order Butterworth filter.

D. dFNC Estimation and Meta-states

dFNC was computed using the sliding window approach.
Each rs-fMRI scan contained 360 volumes per subject
resulting in time courses of 720 s (TR = 2 s) each. Tapered
windows were created by convolving a rectangle (length
= 22 TRs) with a Gaussian of σ = 3 TRs. Using an L1
regularization, a window step size of 30 s (15 volumes) was
implemented [4]. The dFNC windows resulting from the
above process were then clustered using a k-means algorithm
with a random initialization of the centroid positions and
cosine distance was used to cluster the data into meta-states.
The number of k-means clusters was estimated using gap
statistic, and information criteria. To speed up the process,
estimate clusters step was done only on subject exemplars.
All 22 subjects were used in this step. dFNC properties, i.e.,
reoccurrence fraction, dwell time in each state, and total
transition number between states, were calculate for each
subject and for both raw and denoised data. The paired
t-test was used to detect differences in dFNC properties
between the raw and denoised data at the false discovery rate
[FDR]-corrected threshold of 0.01. Furthermore, the meta-
state dynamics method [8] was performed by reducing the
number of windowed FNC correlations to a few (i.e., 8)
components/clusters using k-means. The number of changes
of meta-states, number of distinct meta-states, span of meta-
states, i.e., maximum L1 distance between states for each
subject and total distance, i.e., sum of L1 distances between
successive meta-states for each subject were calculated for
the raw vs. denoised data.

Fig. 1. Spatial maps of thirty-six ICNs in neurological convention

III. RESULTS

Of 75 components, 36 were identified as ICNs (Fig. 1)
using the procedures described in our earlier work [7],
[9]. They are grouped by their anatomical and functional
properties, which include the following: precuneus (PN),
visual (VN), sensorimotor (SMN), auditory (AUD), default-
mode (DMN), language (LN), cognitive/attention (CAN),
sub-cortical (SCN), and cerebellar (CBN) networks. The
observed ICNs are similar to those found in previous studies
with high model order ICA [1]. Time-courses of these
36 ICNs were used to compute dFNC matrices. Optical
number of dFNC clusters was estimated to be 10 using the
Gap, the Bayesian information criterion (BIC), and Akaı̈ke
information criterion (AIC) (Fig. 2).

3138



Fig. 2. dFNC Cluster estimation using Gap, Bayesian information criterion (BIC), and Akaı̈ke information criterion (AIC)

The dynamic states obtained from k-means clustering of
all datasets, averaged across all 10 cross-validation folds,
number of cluster occurrences for states 1 – 10 using 100
bootstrap iterations, frequency of each cluster, mean dwell
time in windows and mean of state transition matrix across
subjects are showed in Fig. 3. Different state vectors were
observed for raw (Fig. 4A) and denoised (Fig. 4B) data in
some subjects. Cluster mean correlations and cluster paired
t-test results of raw vs. denoised at FDR-corrected p-value
of 0.01 is shown in Fig. 5. Differences in mean dwell time
in windows vs. cluster states are shown in Fig. 6. Number
of subjects with finite correlations (n) is also shown. Results
of meta-state analysis using k-means are listed in Table 1.

TABLE 1
META STATE: PAIRED T-TEST BETWEEN RAW AND DENOISED

T-value P-value Mean of
Raw

Mean of
Denoised

Number of States -2.7216 0.0128* 45.7273 52.9545
Change Between
States -3.7336 0.0012* 58.7727 67.5000

State Span -1.2169 0.2371 12.7273 13.6364
Total distance -4.4985 0.0002* 66.0000 78.1364

Fig. 3. A The dynamic states obtained from k-means clustering B Number
of cluster occurrences using 100 bootstrap iterations C Plots showing (from
left to right) frequency of each cluster, mean dwell time in windows, mean
of state transition matrix across subjects.

IV. CONCLUSION

Results revealed that denoising induces significant changes
in time-varying whole-brain network connectivity patterns.
Changes were observed in dFNC across a wide range
of ICNs including the default-mode, subcortical, and a
variety of cognitive/attention networks when raw data were
compared with the denoised data. Additional analyses on
inspecting meta-states showed a significant difference in
(i) the number of changes of meta-states, i.e., how often
does a subject switch between distinct meta-states, (ii)
the number of distinct meta-states, i.e., how many unique
distance vectors are present in an individual and (iii) the total
distance travelled through the meta-state space between raw
and denoised data. Removal of artifacts are important for
achieving reliable fMRI results, however a more cautious
approach should be adapted in regressing such “noise” in
ICA functional connectivity approaches especially if there
is any overlap between two sources in the filtering and ICA
domain. More research is still needed on effect of denoising.
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Fig. 4. State vectors for A raw data B denoised data

Fig. 5. A Cluster mean correlations of raw data, B Cluster mean correlations of denoised data, C Cluster paired t-test results of raw – denoised data.
(FDR-correcred p< 0.01). n = Number of subjects with finite correlations.

Fig. 6. Differences in mean dwell time vs. cluster states for raw and denoised datasets
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