
  

  

Abstract— Medical shapes alignment can provide doctors 

with abundant structure information of the organs. As for a pair 

of the given related medical shapes, the traditional registration 

methods often depend on geometric transformations required 

for iterative search to align two shapes. To achieve the accurate 

and fast alignment of 3D medical shapes, we propose an 

unsupervised and nonrigid registration network. Different from 

the existing iterative registration methods, our method estimates 

the point drift for shape alignment directly by learning the 

displacement field function, which can omit additional iterative 

optimization process. In addition, the nonrigid registration 

network can also adapt to the geometric shape transformations 

of different complexity. The experiments on two types of 3D 

medical shapes (liver and heart) at different-level deformations 

verify the impressive performance of our unsupervised and 

nonrigid registration network. 

 
Clinical Relevance—This paper achieves the real-time 

medical shape alignment with high accuracy, which can help 

doctors to understand the pathological conditions of organs 

better.  

I. INTRODUCTION 

Three-dimensional (3D) medical shapes can intuitively 

show the organ structures; thus, it is conducive for doctors to 

understand the pathological and physiological conditions of 

organs. Multiple medical shapes can be obtained for an organ 

through various medical imaging devices at different imaging 

time. Through the shape alignment, multiple medical shapes 

obtained at different imaging time can be fused together to 

acquire the comprehensive structure information of the organs 

[1]. For example, in cardiac valve replacement surgery 

navigation, aligning the patient's heart shapes acquired before 

and after the surgery can help doctors to analyze the structural 

changes brought by the surgical operation and adjust the 

treatment in time. Therefore, the real-time and precise shape 

alignment directly influences the success of the surgical 

operations. In this paper, we introduce an unsupervised and 

nonrigid shape alignment method based on deep-learning to 

achieve the real-time medical shape alignment with high 

accuracy. 

II. RELATED WORKS 

For medical shape registration task, a number of 
algorithms have been proposed, which can be divided into two 
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categories: the iterative registration methods and the learning-
based registration methods. 

A.  Iterative Registration 

 Iterative Closest Point (ICP) [2] is one of the most 

common registration methods which selects the corresponding 

points from the beginning to iteratively optimize the 

transformation until the distance between two-point sets is less 

than the given threshold. However, in early stage, ICP 

algorithm is applicable for the rigid shape alignment, and 

cannot handle the nonrigid cases. To improve the ICP 

algorithm, a new Go-ICP [3] method is proposed by using the 

branch-and-bound optimization, but this method is 

computationally expensive, which is chosen only for the 

practical scenarios where real-time performance is not critical. 

In addition, Myronenko et al. [4] proposed a nonparametric 

coherent point drift (CPD) algorithm, which leveraged 

Gaussian mixture likelihood and the penalization term on the 

velocity field to finish shape alignment. Thus, CPD algorithm 

is limited to the Gaussian kernel and relatively sensitive to the 

rotation of the target shape. In all, these iterative registration 

methods rely on the time-consuming iterations and cannot 

achieve real-time registration. 

B.  Learning-based Registration 

Learning 3D shapes’ features based on deep neural 

network has been widely used for 3D shape point set analysis. 

For example, PointNet [5] is the first deep neural network 

which processes 3D shape point clouds directly. PointNet 

cannot capture local structures induced by the metric shape 

space points. To solve this problem, Charles et al. [6] proposes 

the PointNet++, which exploits metric shape space distances 

to learn local features with increasing contextual scales. Based 

on these shape feature learning network, a method called 

PointNetLK [7], which minimizes the distance between the 

fixed-length global descriptors to achieve the 3D shape 

registration. However, the PointNetLK algorithm is not robust 

to noise, which influences the shape alignment accuracy. 

Different from the above methods, this paper introduces a new 

unsupervised and nonrigid registration network for the fast 

shape alignment. Especially, the proposed network can adapt 

to the different complexity of the target geometric 

transformation. 
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III. METHOD 

Figure 1 shows the framework of the unsupervised and 

nonrigid registration network, that consists of two parts: 

Learning Global Descriptor and Point Displacement 

Prediction. Here, the point displacement vector is predicted 

directly by a deep neural network. 

We define a training dataset 𝐷, which includes the source 

medical shape 𝑆𝑖 and target medical shapes 𝑇𝑗, and 𝑆𝑖 , 𝑇𝑗 ⊂ 𝑅3. 

Then we assume that there is a function 𝐹𝜃(𝑆𝑖 , 𝑇𝑗) = 𝛿  that 

can represent the displacement of the from 𝑆𝑖 to 𝑇𝑗, and the 𝜃 

means the weights of the neural network. We transform the 

input shapes based on the point displacement, and leverage the 

difference between the transformed source medical shapes and 

target medical shapes as the registration loss to update 𝜃.For 

the weights 𝜃, we use the SGD algorithm to optimize it, and 

the formula is as follows: 

𝜃𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = argmin
𝜃

[𝐿(𝑆𝑖 , 𝑇𝑗 , 𝐹𝜃(𝑆𝑖 , 𝑇𝑗))]        (1) 

, where 𝐿 is a difference measure, 𝑖, 𝑗 means the points in the 
source and target shapes, respectively. s 

 
Figure 1.  The structure of our unsupervised and nonrigid registration 
network. 

 

Figure 2.  The schema of learning global descriptor. 

 

A.  Learning Global Descriptors 

In this part, we firstly learn a global shape descriptor from 

the given medical shapes in order to capture shape 

representation. In order to solve the problem of irregular 

format of medical shapes, we use the multi-layer perceptron 

(MLP) and the maxpool functions. For MLP, its activation 

function is RELU. The aim of leveraging maxpool function is 

to extract the order-invariant features of the source and target 

medical shapes. We assume (𝐿𝑆𝑖
, 𝐿𝑇𝑗

)  denotes shape 

descriptors of source and target medical shapes, and the 

network for Learning Global Descriptor is defined as follows: 

𝐿𝑆𝑖
= 𝑀𝑎𝑥𝑝𝑜𝑜𝑙{𝑔𝑡𝑔𝑡−1 ⋯ 𝑔(𝑋𝑖)}𝑋𝑖∈𝑆𝑖

               (2) 

𝐿𝑇𝑗
= 𝑀𝑎𝑥𝑝𝑜𝑜𝑙{𝑔𝑡𝑔𝑡−1 ⋯ 𝑔1(𝑋𝑖)}𝑋𝑖∈𝑇𝑗

              (3) 

, where the 𝑔𝑡  is the RELU activation function, and can be 

described as 𝑔𝑡: 𝑅𝑊𝑡 ⟶ 𝑅𝑊𝑡+1 , the 𝑊𝑡  and 𝑊𝑡+1  are the 

dimensions of input layers and output layers. Then, 𝐿𝑆𝑖
 and 

𝐿𝑇𝑗
 are concatenated to acquire a tensor with a dimension of 

1 ∗ 2𝑚  (here 𝑚 = 512). The more detailed process of the 

Learning Global Descriptor is shown in figure 2. 

B. Point Displacement Prediction 

After capturing shape representative features, we further 

predict the point displacement function between the target and 

source shapes. In general, for each point 𝑥 in medical shape 𝑋, 

the displacement function Ψ can be defined as: 

Ψ(𝑥) = 𝑥 + 𝛥(𝑋)                              (4) 

, where 𝛥 is the point displacement function for 3D shape data. 
Thus, the process of registration needs to calculate this 
displacement function. In this way, the source medical shape 
can be moved to the target medical shape continuously. And 
because we leverage deep neural network, the function is 
smooth and continuous. 

As shown in figure 1, we copy the concatenated descriptors 

[𝐿𝑆𝑖
, 𝐿𝑇𝑗

]  learned from the former part firstly. Then, we 

concatenate them with the low-dimensional coordinate of 

every point as global descriptor features [𝑋𝑖 , 𝐿𝑆𝑖
, 𝐿𝑇𝑗

]. After 

that, we substitute the above features as input into the MLP 

architecture we designed to learn the displacement of the 

points in the source medical shape and the target medical shape.  

The architecture includes continuous MLP with RELU 

activation functions. 

We define the predicted displacement of each point 𝑋𝑖 
from 𝑆𝑖 as 𝑑𝑋𝑖

: 

𝑑𝑋𝑖
= 𝑓𝑠𝑓𝑠−1 ⋯ 𝑓1 ( [𝑋𝑖 , 𝐿𝑆𝑖

, 𝐿𝑇𝑗
])              (5) 

, where 𝑓𝑠 represents a perceptron. The 𝑓𝑠 can be described as 
𝑓𝑠: 𝑅𝑉𝑠 ⟶ 𝑅𝑉𝑠+1 , the 𝑉𝑠 and 𝑉𝑠+1 are the dimensions of input 
layers and output layers. The notation [∗,∗]  indicates the 
concatenation of different data. 

According to the above definitions, we can define the 

transformed source shape as 𝑆𝑖
′, as follows: 

𝑆𝑖
′ = 𝛿(𝑆𝑖) = {𝑋𝑖 + 𝑑𝑋𝑖

}
𝑋𝑖∈𝑆𝑖

                    (6) 

, where 𝑆𝑖
′  is the point set converted from the source shape 

point set.  

For two medical shapes, since there is no correspondence 

between each shape, pixel-level loss cannot be used for shape 

alignment. Therefore, based on Chamfer Distance proposed by 

Fen et al. [8], the Chamfer Distance Error is used and defined 

as: 

𝐿(𝑆′, 𝑇|𝜃) = ∑ 𝑚𝑖𝑛
𝑌∈𝑇

𝑋∈𝑆′

∥ 𝑋 − 𝑌 ∥2
2 
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                                             + ∑ 𝑚𝑖𝑛
𝑋∈𝑆′

𝑌∈𝑇

∥ 𝑋 − 𝑌 ∥2
2                  (7) 

, where 𝑆′  and 𝑇  are our transformed and target medical 
shapes, and the 𝜃 is the weights in our nonrigid registration 
network structure. X and Y are the points of 𝑆′ and 𝑇. 

C. Implementation Details 

For the training of the entire network, our training set 

{(𝑆𝑖, 𝑇𝑖)|(𝑆𝑖, 𝑇𝑖) ∈ 𝐷}
𝑖=1,2,⋯,𝑏 

 consists of batch data, where 

𝑏  represents the batch size and the 𝑏  is set to 8 in the 

experiments. As we mentioned above, in order to learn the 

shape descriptor tensor, the input is two 𝑛 × 3 matrices, where 

𝑛 denotes the number of points in the medical shape. 

In the Learning Global Description stage, the network 

consists of 5 MLP layers and a maxpool layer. The 

dimensions of the MLP layers are (16, 64, 128, 256, 512). And 

the role of the maxpool layer is to convert it into a 512-

dimensional features. In the Point Displacement Prediction 

stage, we use 3 MLP layers with dimension (256, 128, 3). 

Except the output layer, for each layer, we implement batch 

normalization [9] and use RELU activation. In addition, the 

proposed unsupervised and nonrigid registration network was 

implemented using the popular deep learning framework 

Pytorch, and codes were run on the single GPU (i.e., NVIDIA 

RTX 2080, 8GB). Adaptive moment estimation (Adam) was 

employed for network optimization. The initial learning rate 

was set to 0.001. The network weights are trained for 100K 

iterations with a batch size of 10. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Dataset and Evaluation Metrics 

In this experiment, we used two types of medical shapes 

(i.e., 3D Heart and 3D Liver) to prepare the dataset. The used 

3D Heart and Liver Shapes contain 1000 and 1013 points, 

respectively. To obtain the training and testing datasets, we 

used thin plate spline (TPS) transformation [10], a nonrigid 

geometric transformation, to deform the medical shapes, 

because TPS technique has special spline properties and has 

been widely used in nonrigid image registration [11]. For the 

training dataset, we performed TPS transformation on the 

normalized source medical shapes, and synthesized a set of 

20k deformed shapes at various deformation levels (0.1, 0.4, 

0.8, and 1.2), respectively. We change the deformation level 

by controlling the disturbance degree of the controlling points 

in the TPS deformation. In addition, to obtain the testing 

dataset, we used the TPS transformation to generate 1K testing 

shapes under different-level deformations, respectively. 

Then, for each shape with different-level deformations, we 
analyzed the shape alignment results using quantitative 
evaluation and qualitative visual comparison. We used the 
Chamfer Distance Error between the source and target medical 
shapes before and after shape alignments to finish quantitative 
assessment. 

B. Results of the Liver Shape 

In figure 3, we illustrated the qualitative results of shape 
alignment for liver shapes at different-level deformations. The 

first row showed the different levels of deformations. The 
second and the third rows illustrated the corresponding 
positions of the target and source medical shapes before and 
after shape alignments, respectively. We could see that our 
network was robust to different-level deformations. Even if we 
increased the deformation level to 1.2, with the difficulty of 
medical shape alignment increasing, our network could still 
transform the source medical shape to align the main part of 
the target medical shape reliably. 

 
Figure 3.  The qualitative results of shape alignments for liver shapes 

at different-level deformations. The target medical shape was shown 

in blue, and the source medical shape was shown in red. 

In figure 4 (a), we also plotted the mean deviation of the 
Chamfer Distance Error between the source and target liver 
shapes before and after the medical shape alignments. It was 
obvious that the blue curve was below the red curve 
consistently, and the blue curve remained nearly stable. This 
indicated that, with the deformation level increasing, even 
under high deformation level, our network could still align 
medical shapes accurately. 

 
Figure 4.  The Chamfer Distance Error between the source and target 
shapes, before (red line) and after (blue line) the medical shape 

alignments. (a) the result of liver shape alignment;(b) the result of 

heart shape alignment. 
 

 
Figure 5.  The qualitative results of the shape alignments for heart 
shapes at different-level deformations. The target medical shape was 

shown in blue, and the source medical shape was shown in red. 
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C. Results of Heart Shape 

In figure 5, the results validated that our network was 

robust to the different-level deformations, and when the 

deformation level reached to 1.2, the most part of the heart 

medical shapes could still be aligned. In addition, in the figure 

4 (b), we plotted the average deviation of the Chamfer 

Distance Error between the source and target heart shapes, 

before and after the shape alignments. Compared with the 

Chamfer Distance Error before the shape alignment, the 

Chamfer Distance Error after shape alignment is much less. 

These experimental results validates that the network is 

applicable for the alignment of heart medical shapes. The 

experimental results also show that this network structure can 

be applied to different medical shapes. 

D. Comparison with the Related Works 

To demonstrate the advantage of our proposed nonrigid 

registration approach, we designed the comparison 

experiments with the related works, including the non-

learning based iterative methods (i.e., ICP [2], GMMTree 

[12], GMMReg [13]), and the learning-based shape matching 

method (i.e., R-PointHop [14]). In this experiment, we use the 

Liver and Heart shapes at the deformation of 0.4 to prepare 

the dataset, and take 20 Liver and Heart shapes as the testing 

data. For comparison with R-PointHop method, we take 

another 1000 Liver and Heart shapes as the training data. 

Table I listed the quantitative comparison results. As shown 

in Table.1, it can be found that for both liver and heart shapes, 

the proposed nonrigid registration network outperforms all 

the compared algorithms with the smallest Chamfer distance 

error. In addition, our nonrigid registration method consumed 

significantly less time than the traditional iterative methods. 

Therefore, our proposed method is suitable for the fast shape 

alignment tasks. 

 

V. CONCLUSION 

We have proposed an unsupervised and nonrigid 

registration network that can learn the displacement field 

function for the automatic medical shape alignments. Our 

experiments verify the impressive performance of our 

unsupervised and nonrigid registration network on two 

categories of 3D medical models at different-level 

deformations. This new solution to the medical shape  

 

alignments is especially helpful for doctors to acquire the 

abundant structure information accurately and quickly.  
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TABLE I.  COMPARISON RESULTS WITH THE RELATED WORKS 

Method 

Liver  Heart 

Chamfer Distance 

Error 
Time (Second) 

Chamfer Distance 

Error 
Time (Second) 

ICP [2] 0.027 ± 0.012 0.108 0.025 ± 0.010 0.109 

GMMTree [12] 0.035 ± 0.012 48.756 0.027 ± 0.009 48.8785 

GMMReg [13] 0.021 ± 0.006 424.221 0.026 ± 0.011 469.653 

R-PointHop [14] 0.074 ± 0.036 0.397 0.035 ± 0.016 0.394 

Ours 0.005 ±0.001 0.014 0.008 ±0.001 0.014 

The best results are represented in blue bold. 
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