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Abstract— The analysis of clinical questionnaire data comes
with many inherent challenges. These challenges include the
handling of data with missing fields, as well as the overall
interpretation of a dataset with many fields of different scales
and forms. While numerous methods have been developed to
address these challenges, they are often not robust, statistically
sound, or easily interpretable. Here, we propose a latent factor
modeling framework that extends the principal component
analysis for both categorical and quantitative data with missing
elements. The model simultaneously provides the principal
components (basis) and each patients’ projections on these bases
in a latent space. We show an application of our modeling
framework through Irritable Bowel Syndrome (IBS) symptoms,
where we find correlations between these projections and other
standardized patient symptom scales. This latent factor model
can be easily applied to different clinical questionnaire datasets
for clustering analysis and interpretable inference.

I. INTRODUCTION

This application proposes a solution to issues faced in
clinical datasets built from patient questionnaires. The first
issue is in the prominence of missing data, especially in
longer questionnaires. Additionally, these questions often
result in a dataset with many fields of both categorical and
continuous data, which renders them difficult to interpret.
The question of how best to combine individual fields to
summarize the state of a patient’s condition is the focus of
this research. The efficacy of our method is demonstrated
through a dataset on Irritable Bowel Syndrome (IBS) [1].

We can approach inference of questionnaire data as a prob-
lem of dimensionality reduction, i.e. how best to transform
the many clinical measurements into fewer, representative
variables. One common method for this transformation is to
take a summation of patient responses. These aggregate mea-
sures can be effective for expressing the magnitude of patient
condition severity, as done in the Whorwell Severity Scale
for IBS [2]. This method, however, concedes information
about the specific condition of each patient; two patients with
dissimilar symptoms may be summarized with the same ag-
gregate score. To capture this underlying structure, we must
utilize more robust dimensionality reduction techniques.

The most prominent method for dimensionality reduction
is Principal Component Analysis (PCA) [3], which reduces
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a dataset to a set of uncorrelated variables which explain
the most variance present in the data. While this technique
is useful for dimensionality reduction without losing infor-
mation, this approach is not equipped to handle categorical
data, as found in questionnaires. Multiple Correspondence
Analysis (MCA) [4] is equivalent to PCA for nominal
data, and may also be extended to handle both categorical
and continuous measures. MCA may also be extended to
handle mixed data types (combinations of categorical and
continuous measures), known as Factor Analysis of Mixed
Data (FAMD). The drawback to these methods is that the
handling of missing data is not embedded in the method and
it requires a secondary process. Furthermore, these methods
are developed with pre-set assumptions on the categorical
and quantitative data distributions, which may not hold for
certain datasets. The outcome of these measures is a point es-
timate of data points’ coordinates in the principal component
space, which can mask the statistical significance of these
projections. More recently, flexible techniques such as t-SNE
[5], UMAP [6], or VAEs [7] may also be used to reduce the
dimensionality of mixed data, but the interpretability of the
learned transformation is complex.

To answer challenges in the analysis of questionnaire data,
we propose a probabilistic model which may simultane-
ously handle both missing data and mixed data types in
the search of principle components and new data points’
coordinates. This model reduces questionnaire responses into
a low dimensional approximately-orthogonal basis (principal
components), which allows for the separation of different
underlying conditions. This mapping allows clinicians to
better capture the condition affecting each patient. Our
principle components and corresponding point coordinates
provide interpretable pictures of how different symptoms are
grouped, and how much of each symptom group is present
for each patient. Furthermore, the latent variables for each
patient may be used as a predictor of treatment outcome, or
as an alternative measure for monitoring disease progression.

The structure of our paper is as follows: Section II
introduces our modeling framework formulation. Section III
shows the interpretation and results of our model for IBS.
Section IV provides an analysis of the significance of our
model.

II. MATERIALS AND METHODS
A. Proposed Model Framework

Our method finds the first d principal components in
patient questionnaire data with n patients and m symptoms.
Vector yn has m elements representing the nth patient’s
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responses to the questionnaire. Each element of the vector
represents a symptom, which may be present, not present, or
not reported. Vector xn with d elements, is the latent weight
vector for the nth patient, where the principal components are
defined by a matrix Amxn and intercept vector bmx1. Using
A and xn, the probability of observing a yn is defined by:

P(yn j|xn)∼ Bernoulli(Pn j) j=1...m (1a)
logit Pn j = A jxn +b j (1b)

Where yn j is the jth element of the vector yn. Aj is the jth

row of the basis A, and vector b is the expected outcome of
the jth symptom, in logit scale, across all patients. Note that
xn is not observed, and it is a latent variable in our model.

Here, we assume the latent variables follow a multivariate
normal with common prior µ0 and covariance of Σ0: xn ∼
N(µ0,Σ0).

The likelihood of observing the symptoms Ynj given xn
is defined by:

L(yn j|xn) =


Pn j if Yn j = 1 (present)
1−Pn j if Yn j = 0 (not present)
1 not reported

(2)

and the full likelihood of observed symptoms across
patients is defined by:

L(y1...N ;x1..N ,µ0,Σ0,A,b) =
N

∏
n=1

M

∏
j=1

L(yn j|xn) (3)

We assume the symptoms are independent given xn, and
that each participants responses are independent from others.
The posterior distribution on our model parameters and our
latent variable is defined by:

P(x1...N ,A,b,y1...N ;µ0,Σ0)

∝ L(y1...N ;x1...N ,µ0,Σ0,A,b)
N

∏
n=1

P(xn;µ0,Σ0)
(4)

where P(xn;µ0,Σ0) is the likelihood of xn given (µ0,Σ0)
using the multivariate normal prior.

We can also include continuous measurements in our
model. Let vector zn, with k elements, represent the nth

patient’s continuous measurements. Each element, as with
our categorical data, may be measured or not reported. The
likelihood of observing measurement znk given xn is defined
by:

L(znk|xn) =

 1√
2πσk

exp −(znk−Akxn−bk)
2

2σ2
k

if measured

1 not reported
(5)

where we assume A and b to have m+k rows. We assume
znk follows a normal distribution with mean Akxn +bk and
unknown variance σk. Other continuous distributions, such
as log-normal or exponential, could also be used to model

znk, depending on the type of measurements. For cases of
mixed data, our model likelihood is defined by:

L(z1...N ,y1...N ;x1...N ,µ0,Σ0,A,b) = L(y1...N ;x1...N ,µ0,Σ0,A,b)

∗
N

∏
n=1

K

∏
k=1

L(znk|xn)

(6)
where we assume categorical and continuous measure-

ments are statistically independent given xn. We can similarly
define the posterior of the model parameters like in equation
4, where we only have categorical data. Note that we now
have a new set of parameters σ2

k which need to be estimated
along other parameters in the model.

The latent factor model defined in equation 6 can repre-
sented as a graphical model as shown in Figure 1. Note that
θ = {µ0,Σ0} is the prior on our latent variable X.

X

Y

Z

θ

A,b

N

Fig. 1. Graphical model for latent factor model. θ is the set of
parameters characterizing prior distributions of the latent variable
X; Z and Y are continuous and categorical observed variables. A
and b are the observation model free parameters.

B. Parameter Optimization

Our objective is to find A and b along with x1...N which
maximize the likelihood defined in equation 4 or 6. This
objective can be expanded to mixed data by including σ1...k
in the optimization step. The optimization function is defined
by:

argmax
x1...N ,A,b

P(xn,A,b,yn;σ0,Σ0)

s.t.||AT A− I||2F < γ

(7)

where ||AT A− I||2F is the Frobenius norm and γ is a
small positive number. This norm will imply matrix A to
be approximately orthonormal.

When xn are known, we can use out-of-box numerical
methods to find A and b elements. Here, we must simul-
taneously estimate x1..N and A and b elements; thus we
use expectation-maximization (EM) techniques to recursively
find posterior estimation of x1..N and A and b elements that
maximize the posterior, as in [8] [9]. The EM technique is
an established solution for maximum likelihood estimation
in the presence of latent and/or missing data points. We use
sampling techniques, e.g. Monte-Carlo, to find the posterior
of x1..N and use those samples to find what A and b will
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maximize the expected log of the posterior. Our implemen-
tation can be found at the github link: https://github.
com/YousefiLab/LatentFactorQuestionnaire.

In the following section, we show an application of our
methodology in the IBS dataset. We focus on reported IBS
symptom data, so our model contains only categorical data.

III. RESULTS

A. IBS Dataset

We studied the dataset from the clinical trial initially de-
scribed in [1]. This includes samples from 230 IBS patients,
with measurements taken at three time points throughout
the study. Measurements consist primarily of questionnaire
data based on IBS pain and reported symptoms. The primary
outcome measures analyzed in previous studies are the IBS
Global Improvement Scale [10], IBS Symptom Severity
Scale [2], and the IBS Quality of Life (IBS-QOL) measure
[11]. Each of these scales are formed through questionnaire
data, either in single questions or through the aggregation
of many questions (e.g. 34 questions for IBS-QOL). In our
analysis, we sought to create a more robust representation of
patients’ overall symptoms, based on a series of 19 binary
symptom variables. We focus our analysis on the group of
patients who received treatment (non-waitlist group), in the
form of sham acupuncture and patient-practitioner interac-
tion. We excluded data points where the patient dropped
out of the study after the baseline measurements (n=126).
Our proposed model is especially useful for the analysis
of conditions such as IBS, which have high inter-patient
variability [12].
B. Basis and Latent Variables

We applied our modeling framework on the IBS dataset
under the assumption that two principal components may
capture the structure of reported symptoms. Figure 2 shows
each of the questionnaire symptoms plotted in the trans-
formed principle components coordinates. We see clear
groupings of symptoms along each of these components.
Along the first component, we note the importance of
symptoms associated with the lack of psychological or sleep-
related issues, such as insomnia, dry mouth, and difficulty
concentrating (lower left of figure). Along the second com-
ponent, we note the importance of symptoms generally
associated with physical issues, such as diarrhea, headache,
muscle/joint pain, and loss of appetite (upper right of figure).
This offers a clear interpretation for physicians, as we can
now understand how each latent component describes the
patients’ overall disease burden.

Our centering term b provides the expected log-odds of
each symptom across all patients. In figure 2 we can see that
headache has the largest intercept term, indicating it may be a
more common symptom across patients, whereas palpitations
has a strong negative log-odds, indicating that it may be a
rarer and more severe symptom.

Given this context, latent variable estimates for each
patient provide insight into the observed symptoms for each
patient. For example, a patient with a higher value of x1 and
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Fig. 2. Fitted parameters A, b on IBS symptom data. (Left) Basis
A shown with each component in logit space, meaning symptoms
with higher values in basis n have higher probability given positive
xn. (Right) The intercept term b, which represents the expected
log-odds of each symptom across patients.

a lower value of x2 may have more physical pain symptoms
and few psychological or sleep symptoms. These variables
provide effective summary measures which may result in
distinctive clusters, showing commonalities across patient
groups.

In the next section, we discuss how these latent variables
relate to other known measures of IBS.

C. Correlation at Baseline

We subsequently examined the potential correlation of our
summary statistics (x1 and x2) with other patient metrics
measured at baseline using established scales. In table I,
we show Pearson correlation coefficients of x1 and x2 with
IBS-specific and non-specific measures of physical pain and
psychological distress. Recall that x1 indicates a lack of
psychological symptoms, and x2 indicates the presence of
physical pain symptoms. We note that there is a consistent
negative correlation with x1 across all metrics, suggesting
perhaps that alleviation of the psychological cluster of symp-
toms might have a positive impact on the overall patient
symptomatology. For x2, there is a positive correlation with
anxiety and both general and IBS-specific pain, which indi-
cates that treatment of diarrhea, lost appetite, and headache
may result in reduced anxiety and pain.

In a broader sense, these correlation results imply that
x1 and x2 bring new and meaningful summary metrics for
each patient which can be used for finding associations with
symptom clusters and established outcome measures.

PEARSON CORRELATION

Metric X1 X2
Carroll Depression Scale -.321∗∗ .155
Beck Anxiety Inventory -.315∗∗∗ .389∗∗∗

McGill Pain Scale -.315∗∗ .284∗∗

IBS-QOL -.279∗∗ .151
IBS-SSS -.235∗ .298∗∗

TABLE I. Correlation between latent variables and other metrics
taken at study baseline. ∗p<0.05; ∗∗p< 0.01, ∗∗∗p<0.001.
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Fig. 3. Linear Regression analysis of delta x1 vs. delta Beck Anxiety
Inventory. Mid-study change corresponds to values reported 3
weeks after treatment compared to baseline.
∆ Anxiety = -1.092 (∆x1) - 0.931
P > | t | = 0.0223; R2 = 0.064
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Fig. 4. Linear Regression analysis of delta x2 vs. delta (%) IBS
Symptom Severity Scale. Mid-study change corresponds to values
reported 3 weeks after treatment compared to baseline.
∆ IBS-SSS = 2.373 (∆x2) - 27.069
P > | t | = 0.0148; R2 = 0.060

D. Comparison of Outcome Measures

Given the result demonstrated in the previous section, we
additionally explore the relationship between the change in
latent variables and treatment impact.

We fit linear regression models using the change in each
latent variable to predict the change in each of the metrics de-
scribed above. We find statistically significant results for both
Beck Anxiety Inventory and IBS-SSS. Change in x1 could
predict change in Beck Anxiety Inventory, indicating that
measures to reduce symptoms such as insomnia, dry mouth,
and fatigue may reduce patient anxiety. Additionally, change
in x2 could predict change in IBS-SSS, which indicates
that limiting diarrhea, loss of appetite, and headache, might
have a positive impact in IBS-specific symptoms, including
abdominal pain and distortion.

IV. CONCLUSION

We approached the challenges presented by questionnaire
data through a probabilistic model framework. The output
of our model is an approximately orthonormal basis, which
we show is effective in visualizing groupings of responses as
reported in questionnaire data, as well as latent data points
which we express as an interpretable treatment outcome
measure.

Through our study in IBS, we found interpretable clusters
of patient symptoms, with one grouping of physical pain
symptoms and another of psychological and sleep-related
symptoms. Using the latent space projection for each patient
resulted in statistically significant findings for both corre-
lation with other baseline clinometrics as well as Linear
Regression modeling of metric deltas.

This framework can be applied to other clinical ques-
tionnaire datasets with missing and mixed data types. In
addition to the model outputs used in the application of IBS,
our model may be used to obtain probability estimates for
each missing data point, and the distribution of each patient
data projection can also be studied to further understand
the significance of these summary statistics. With each path
of analysis, our solution offers interpretable results, a key
element for clinical analysis which is missing from other
widely used techniques such as t-SNE and UMAP.
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